Abstract:
A composition for an organic electroluminescent device is a composition for forming an organic light emitting layer of an organic electroluminescent device by wet coating process. The composition contains a phosphorescent material, a charge transport material, and a solvent, in which the phosphorescent material and the charge transport material are each an unpolymerized organic compound, and the first oxidation potential of the phosphorescent material ED+, the first reduction potential of the phosphorescent material ED−, the first oxidation potential of the charge transporting material ET+, and the first reduction potential of the charge transporting material ET− satisfy the following condition: ET−+0.1≦ED−
Abstract:
The present invention provides an organic electroluminescent device exhibiting a long life, a high luminance, and a high efficiency.An organic electroluminescent device comprising on a substrate an anode, a hole transport layer, an organic light-emitting layer, and a cathode, wherein the organic light-emitting layer contains an organic compound having a pyridine ring, a pyrazine ring, or a triazine ring as a partial structure and the hole transport layer contains a monoamine compound represented by the following formula (I): wherein R1 to R9 represent a hydrogen atom, an aryl group, or an alkyl group; R1 to R9 may be the same or different from each other; and R1 to R9 may further have an aryl group or an alkyl group as a substituent in the case where R1 to R9 are an aryl group or an alkyl group.
Abstract:
The present invention provides an organic electroluminescent device exhibiting a long life, a high luminance, and a high efficiency.An organic electroluminescent device comprising on a substrate an anode, a hole transport layer, an organic light-emitting layer, and a cathode, wherein the organic light-emitting layer contains an organic compound having a pyridine ring, a pyrazine ring, or a triazine ring as a partial structure and the hole transport layer contains a monoamine compound represented by the following formula (I): wherein R1 to R9 represent a hydrogen atom, an aryl group, or an alkyl group; R1 to R9 may be the same or different from each other; and R1 to R9 may further have an aryl group or an alkyl group as a substituent in the case where R1 to R9 are an aryl group or an alkyl group.