Abstract:
A data transmission apparatus disposed within two network layers operative at different data rates is provided. The data transmission apparatus is coupled to a clock generator which provides a reference clock for a lower network layer and is coupled to a frequency synthesizer with an integer division factor that generates a divided clock for an upper network layer according to the reference clock and the integer division factor. The data transmission apparatus includes a first processing circuit and a second processing circuit. The first processing circuit corresponding to the upper network layer receives and transmits data by using the divided clock as its operation frequency. The second processing circuit corresponding to the lower network layer receives and transmits data from the first processing circuit by using the reference clock as an operation frequency for encoding data. The divided clock is generated from the frequency synthesizer with the integer division factor.
Abstract:
A method used in a network device for outputting data to a bus with a data bus width at each cycle includes: using a packet generator for generating idle data after an end of packet for a packet at a cycle and generating a start of packet for a next packet at a different cycle; and using an inter-packet gap (IPG) generator for receiving data transmitted from the packet generator, dynamically writing the received data into the buffer, and inserting a gap of idle data between the end of packet and the start of packet according to the end of packet and the idle data generated by the packet generator.
Abstract:
A method used in a network device for outputting data to a bus with a data bus width at each cycle includes: using a packet generating circuit for generating idle data after an end of packet for a packet at a cycle and generating a start of packet for a next packet at a different cycle; and using an inter-packet gap (IPG) generating circuit for receiving data transmitted from the packet generating circuit, dynamically writing the received data into the buffer, and inserting a gap of idle data between the end of packet and the start of packet according to the end of packet and the idle data generated by the packet generating circuit.
Abstract:
A method used in a network device for outputting data to a bus with a data bus width at each cycle includes: using a packet generator for generating idle data after an end of packet for a packet at a cycle and generating a start of packet for a next packet at a different cycle; and using an inter-packet gap (IPG) generator for receiving data transmitted from the packet generator, dynamically writing the received data into the buffer, and inserting a gap of idle data between the end of packet and the start of packet according to the end of packet and the idle data generated by the packet generator.
Abstract:
A data transmission apparatus disposed within two network layers operative at different data rates is provided. The data transmission apparatus is coupled to a clock generator which provides a reference clock for a lower network layer and is coupled to a frequency synthesizer with an integer division factor that generates a divided clock for an upper network layer according to the reference clock and the integer division factor. The data transmission apparatus includes a first processing circuit and a second processing circuit. The first processing circuit corresponding to the upper network layer receives and transmits data by using the divided clock as its operation frequency. The second processing circuit corresponding to the lower network layer receives and transmits data from the first processing circuit by using the reference clock as an operation frequency for encoding data. The divided clock is generated from the frequency synthesizer with the integer division factor.
Abstract:
A method used in a network device for outputting data to a bus with a data bus width at each cycle includes: using a packet generating circuit for generating idle data after an end of packet for a packet at a cycle and generating a start of packet for a next packet at a different cycle; and using an inter-packet gap (IPG) generating circuit for receiving data transmitted from the packet generating circuit, dynamically writing the received data into the buffer, and inserting a gap of idle data between the end of packet and the start of packet according to the end of packet and the idle data generated by the packet generating circuit.
Abstract:
A communication device and associated method is provided. The communication device includes: a controller; a packet buffer, configured to store a current packet segment and a previous packet segment of an incoming packet; and a plurality of cyclic redundancy check (CRC) circuits, wherein each CRC circuit is individually fed with a portion of the current packet segment and/or a portion of the previous packet segment in a respective cycle of the incoming packet, and an initial value, wherein the plurality of CRC circuits are arranged in parallel.