摘要:
A fabrication method produces Si compatible light-emitting materials showing sizeable optical gain by thermally annealing thin film layers of Si-rich nitride (SiNx) By utilizing the Si compatible light-emitting material, light emitting devices can be fabricated that are compatible with CMOS processes. The Si compatible light-emitting material is a high index (refractive index ranging from 1.6 to 2.3) material allowing flexible design of high confinements photonic devices with strong structural stability with respect to annealing treatments. The Si compatible light-emitting material realizes broad band light emission by allowing resonant coupling with rare earth atoms and other infrared emitting quantum dots and better electrical conduction properties with respect to SiO2 systems. The Si compatible light-emitting material also realizes high transparency (low pumping and modal losses) in the visible range.
摘要翻译:制造方法通过热退火富Si氮化物(SiN x x)的薄膜层产生显示出相当大的光学增益的Si兼容的发光材料。通过利用Si兼容的发光材料,发光器件可以 与CMOS工艺兼容。 Si兼容的发光材料是高折射率(折射率范围为1.6至2.3)的材料,允许灵活设计具有相对于退火处理的强结构稳定性的高约束光子器件。 Si兼容的发光材料通过与稀土元素和其它红外发射量子点的谐振耦合以及相对于SiO 2系统的更好的导电性能来实现宽带发光。 Si兼容的发光材料在可见光范围内也实现了高透明度(低抽运和模态损耗)。
摘要:
A fabrication method and materials produce high quality aperiodic photonic structures. Light emission can be activated by thermal annealing post growth treatments when thin film layers of SiO2 and SiNx or Si-rich oxide are used. From these aperiodic structures, that can be obtained in different vertical and planar device geometries, the presence of aperiodic order in a photonic device provides strong group velocity reduction (slow photons), enhanced light-matter interaction, light emission enhancement, gain enhancement, and/or nonlinear optical properties enhancement.
摘要翻译:制造方法和材料产生高质量的非周期光子结构。 当使用SiO 2和SiN x 3或富Si氧化物的薄膜层时,可以通过生长后处理进行热退火来激发发光。 从这些非周期结构可以在不同的垂直和平面器件几何形状中获得,光子器件中非周期性顺序的存在提供了强的组速度降低(慢光子),增强的光物质相互作用,光发射增强,增益增强和 /或非线性光学性能增强。
摘要:
A waveguide structure includes a SOI substrate. A core structure is formed on the SOI substrate comprising a plurality of multilayers having alternating or aperiodically distributed thin layers of either Si-rich oxide (SRO), Si-rich nitride (SRN) or Si-rich oxynitride (SRON). The multilayers are doped with a rare earth material so as to extend the emission range of the waveguide structure to the near infrared region. A low index cladding includes conductive oxides to act as electrodes.
摘要:
A microphotonic light source includes an optical pump and a plurality of waveguides that distribute optical pump power of the optical pump. At least one Erbium-doped laser ring is coupled to at least one of the waveguides so as to match the resonance condition of the optical pump.