Abstract:
Video send and receive capabilities of participants are determined by the respective machines determining available combinations, as well as preferences for the receivers. Receiver capabilities are forwarded to the source for computation of negotiated video capabilities through a logic intersection of the determined capabilities based on desired number of streams and resolutions. If a resolution of a send capability exists within the receive capability, the highest frame and/or bit rate may be selected for transmission.
Abstract:
Video send and receive capabilities of participants are determined by the respective machines determining available combinations, as well as preferences for the receivers. Receiver capabilities are forwarded to the source for computation of negotiated video capabilities through a logic intersection of the determined capabilities based on desired number of streams and resolutions. If a resolution of a send capability exists within the receive capability, the highest frame and/or bit rate may be selected for transmission.
Abstract:
Video send and receive capabilities of participants are determined by the respective machines determining available combinations, as well as preferences for the receivers. Receiver capabilities are forwarded to the source for computation of negotiated video capabilities through a logic intersection of the determined capabilities based on desired number of streams and resolutions. If a resolution of a send capability exists within the receive capability, the highest frame and/or bit rate may be selected for transmission.
Abstract:
Video receiving capabilities of participants and source capabilities are compared and conference capabilities for providing different resolutions, frame rates, bit rate, and number of streams are determined by maintaining a conference receiving capability list updated as number and capability of participants' changes. Preferred receiving capabilities of participants are also taken into account in determining conference characteristics based on comparison with allowed capabilities.
Abstract:
Video send and receive capabilities of participants are determined by the respective machines determining available combinations, as well as preferences for the receivers. Receiver capabilities are forwarded to the source for computation of negotiated video capabilities through a logic intersection of the determined capabilities based on desired number of streams and resolutions. If a resolution of a send capability exists within the receive capability, the highest frame and/or bit rate may be selected for transmission.
Abstract:
Video receiving capabilities of participants and source capabilities are compared and conference capabilities for providing different resolutions, frame rates, bit rate, and number of streams are determined by maintaining a conference receiving capability list updated as number and capability of participants' changes. Preferred receiving capabilities of participants are also taken into account in determining conference characteristics based on comparison with allowed capabilities.
Abstract:
Video receiving capabilities of participants and source capabilities are compared and conference capabilities for providing different resolutions, frame rates, bit rate, and number of streams are determined by maintaining a conference receiving capability list updated as number and capability of participants' changes. Preferred receiving capabilities of participants are also taken into account in determining conference characteristics based on comparison with allowed capabilities.
Abstract:
Video receiving capabilities of participants and source capabilities are compared and conference capabilities for providing different resolutions, frame rates, bit rate, and number of streams are determined by maintaining a conference receiving capability list updated as number and capability of participants' changes. Preferred receiving capabilities of participants are also taken into account in determining conference characteristics based on comparison with allowed capabilities.
Abstract:
A method for transmitting and receiving a message is provided. The method includes steps of providing a bridge device having a bridge hardware address and a first end, receiving a first message including a first hardware address, a first protocol address and a second protocol address from the first end, recording the first hardware address and the first protocol address on a table, replacing the first hardware address with the bridge hardware address, transmitting the first message to a second end having a second hardware address corresponding to the second protocol address; transmitting a second message including the first protocol address, the second protocol address, the bridge hardware address, and the second hardware address from the second end to the bridge device, replacing the bridge hardware address with the first hardware address according to the table; and transmitting the second message to the first end.
Abstract:
Technologies are described herein for detecting and managing congestion on a shared network link. A determination is made whether the shared network link is congested based on loss rate and round-trip time (RTT) between a computer and a receiver operatively coupled by the shared network link. Upon determining that the shared network link is congested, a back-off operation is performed on the computer. The back-off operation may reduce an allocated bandwidth of the computer on the shared network link by transforming a higher allocated bandwidth into a lower allocated bandwidth.