摘要:
The nanofabrication of a hydrogen gas nanosensor device from single straight and branched, tripod shaped ZnO nanorods using in-situ lift-out technique, performed in the chamber of a focused ion beam (FIB) system is disclosed. Self-assembled ZnO branched nanorods have been grown by a cost-effective and fast synthesis route using an aqueous solution deposition method and rapid thermal processing. The properties of the ZnO nanorod structures were analyzed by X-ray diffraction, scanning electron microscopy, energy dispersion X-ray spectroscopy, transmission electron microscopy and micro-Raman spectroscopy. High quality ZnO nanorods were obtained with a 90% success rate for building nanodevices. The fabricated nanosensor can gauge 150 ppm hydrogen gas in the air at room temperature. The nanosensor has selectivity for other gases such as oxygen, methane, carbon monoxide and liquid propane gas. The ZnO nanorod sensors of the present invention also operate at low power of less than 5 microwatts.
摘要:
Apparatus, methods, systems and devices for fabricating individual CNT collimators. Micron size fiber coated CNT samples are synthesized with chemical vapor deposition method and then the individual CNT collimators are fabricated with focused ion beam technique. Unfocused electron beams are successfully propagated through the CNT collimators. The CNT nano-collimators are used for applications including single ion implantation and in high-energy physics, and allow rapid, reliable testing of the transmission of CNT arrays for transport of molecules.
摘要:
A multi-wall carbon nanotube field emitter and method of producing the same is disclosed. The multi-wall carbon nanotube field emitter comprises a nanotube having a diameter between approximately 1 nanometer and approximately 100 nanometers with an integrally attached outer layer of graphitic material that is approximately 1 micrometer to approximately 10 micrometers in diameter attached to an etched tip of a wire. The tip of the wire is etched to form a tip and a slot is fabricated in the tip for alignment and attachment of the carbon nanotube. A focus ion beam is used to weld the nanotube to the tungsten tip for electron field emission applications.