Abstract:
The present invention relates to a bipolar battery, especially a NiMH battery, having: a sealed housing, a negative end terminal, a positive end terminal, and at least one biplate assembly comprising a biplate, a positive and a negative electrode. A separator is arranged between each negative and positive electrode forming a battery cell, said separator includes an electrolyte. An inner barrier of a hydrophobic material is arranged around at least one electrode, whereby said inner barrier prevents an electrolyte path from one cell to another cell, and a frame is present to provide predetermined cell spacing between each biplate and/or biplate and end terminal. The frame is attached in such a way to each biplate to permit ambient gas to pass between adjacent cells, thereby creating a common gas space for all cells in the battery. The invention also relates to a method for manufacturing a bipolar battery.
Abstract:
A gasket is for use in a starved electrolyte bipolar battery. The gasket may be made from a hydrophobic material in the shape of a frame to prevent the creation of an electrolyte path between adjacent cells when mounted in a battery. The frame may be designed to at least partially encompass a biplate when mounted in a bipolar battery, and include a device or way to permit gas passage through the gasket. The gasket may be made from a material with deformable properties to provide a sealing to a biplate and/or endplate when mounted in a bipolar battery, whereby an outer pressure tight seal of the battery may be obtained. A starved bipolar battery and a method for manufacturing a starved bipolar battery are also disclosed.
Abstract:
A battery terminal post of the type for use in electrolytic devices contained by resilient electrolyte-resistant walls, wherein an opening in the electrolytic device wall is radially enlarged to form a bushing, into which is inserted a second T-shaped lead alloy bushing, into which in turn there is inserted a complementary third bushing of pure lead, which three bushings are then forced into intimate sealing contact by being radially expanded by the action of a punch and die in a swaging operation.
Abstract:
A multicell lead-acid battery having a low profile, unitary combination cast-on-strap and intercell connector configured relative to other components of the battery to be resistant to vibrational forces. A method for forming the connector features a heat sealing step to provide a tight mechanical fit.
Abstract:
The present invention relates to a casing 10 for a sealed bipolar battery 20, 30, 50, 55, 60 comprising at least one battery cell 21, wherein each cell have electrodes with non-metallic substrates. The casing comprises at least two parts, an upper part 12, 31, 41, 61 and a lower part 11, 51, 62, that are joined together to form the casing of the battery. A mechanically compliant arrangement are built-in to the casing to reduce the forces on the cell stack caused by changes in cell thickness during operation, and a pressure means are built-in to the casing to distribute the pressure across the cell stack.
Abstract:
The present invention relates to a bipolar battery having at least two battery cells comprising: a sealed housing, a negative end terminal, a positive end terminal, at least one biplate assembly arranged in a sandwich structure between said negative and positive end terminals, and a separator, including an electrolyte, arranged between each negative and positive electrode forming a battery cell. The biplate assembly is provided with an inner barrier of a hydrophobic material around the negative and the positive electrode, respectively, and an outer seal around the edge of each biplate. Each end terminal is provided with a terminal seal. The edge of each biplate is positioned close to the sealed housing to provide means to conduct heat from each biplate assembly to the ambient environment. The invention also relates to a method for manufacturing a bipolar battery and a biplate assembly.
Abstract:
The present invention relates to a bipolar battery having at least two battery cells comprising: a negative end terminal, a positive end terminal and at least one biplate assembly arranged in a sandwich structure between the negative and positive end terminals. The battery also comprises a separator, with electrolyte, arranged between each negative and positive electrode forming a cell. An inner barrier of a hydrophobic material is arranged at least around one electrode on a first side of the biplate. An outer sealing, e.g. a frame, is provided around the edge of each biplate assembly and each end terminal and a hole is arranged through each biplate interconnecting each cell with adjacent cell(s) to create a common gas space for all cells in the battery. The invention also relates to a biplate assembly.
Abstract:
A gasket 20; 40; 80 for use in a starved electrolyte bipolar battery comprises a structural part 27; 44; 82 in the shape of a frame having an upper surface 1 and a lower surface 2, and at least one channel 23, 24; 83, 84 to permit gas passage through the gasket. The structural part is made from a first material having hydrophobic properties. The gasket 20; 40; 80 further comprises at least a first sealing surface 30; 47; 91 arranged in a closed loop projecting from the upper surface 1, and at least a second sealing surface 30; 47; 92 arranged in a closed loop projecting from the lower surface 2. The first and the second sealing surfaces are provided on at least one sealing part 26; 41, 41; 81, are made from a second material, and the first material of the structural part 27; 44; 82 has a higher elastic modulus than an elastic modulus of the second material of the sealing parts 26; 41, 42; 81. A starved electrolyte bipolar battery and a method for manufacturing a gasket are also disclosed.
Abstract:
The present invention relates to a bipolar battery having at least two battery cells comprising: a sealed housing, a negative end terminal, a positive end terminal, at least one biplate assembly arranged in a sandwich structure between said negative and positive end terminals, and a separator, including an electrolyte, arranged between each negative and positive electrode forming a battery cell. The biplate assembly is provided with an inner barrier of a hydrophobic material around the negative and the positive electrode, respectively, and an outer seal around the edge of each biplate. Each end terminal is provided with a terminal seal. The edge of each biplate is positioned close to the sealed housing to provide means to conduct heat from each biplate assembly to the ambient environment. The invention also relates to a method for manufacturing a bipolar battery and a biplate assembly.