Abstract:
Provided is a process for forming a barrier film to prevent resist poisoning in a semiconductor device by depositing a second nitrogen-free barrier layer on top of a first barrier layer containing nitrogen. A low-k dielectric layer is formed over the second barrier layer. This technique maintains the low electrical leakage characteristics of the first barrier layer and reduces nitrogen poisoning of a photoresist layer subsequently applied.
Abstract:
An apparatus for performing contaminant sensitive processing on a substrate. A substrate load chamber receives the substrate from an ambient contaminant laden environment, and isolates the substrate from the ambient contaminant laden environment. The substrate load chamber further forms a first environment of intermediate cleanliness around the substrate. A substrate pass through chamber receives the substrate from the substrate load chamber, and isolates the substrate from the intermediate cleanliness of the first environment of the substrate load chamber. The substrate pass through chamber further forms a second environment of high cleanliness around the substrate. A substrate transfer chamber receives the substrate from the substrate pass through chamber, and isolates the substrate from the high cleanliness of the second environment of the substrate pass through chamber. The substrate transfer chamber maintains a third environment of high cleanliness around the substrate, and transfers the substrate into more than one substrate processing chambers, where the substrate is selectively transferred into and out of the more than one substrate processing chambers without leaving the high cleanliness of the third environment. The substrate transfer chamber also selectively passes the substrate to the substrate pass through chamber when the substrate pass through chamber has formed the high cleanliness of the second environment. The substrate pass through chamber also receives the substrate from the substrate transfer chamber, and selectively passes the substrate to the substrate load chamber when the substrate load chamber has formed the intermediate cleanliness of the first environment. The substrate load chamber receives the substrate from the substrate pass through chamber, and selectively passes the substrate out of the substrate load chamber and into the ambient contaminant laden environment when the substrate load chamber is not open to the substrate pass through chamber.
Abstract:
A method of forming a metal interconnect in an integrated circuit. A copper layer is formed over dielectric structures on the integrated circuit, where the dielectric structures have an upper level. The copper layer is planarized to be no higher than the upper level of the dielectric structures, without reducing the upper level of the dielectric structures. An electrically conductive capping layer is formed over all of the copper layer, without the capping layer forming over any of the dielectric structures.
Abstract:
Embodiments of the invention include a method for forming a copper interconnect having a bi-layer copper barrier layer. The method comprises the steps of providing a substrate in a processing chamber, the substrate having a low-K dielectric insulating layer and an opening in the insulating layer. A first barrier layer of tantalum/tantalum nitride is formed on the insulating layer and in the opening. A second barrier layer is formed on the first barrier layer. The second barrier layer consisting of a material selected from the group of palladium, chromium, tantalum, magnesium, and molybdenum. A copper seed layer is formed on the second barrier layer and a bulk copper layer is formed on the seed layer. The substrate is annealed and subject to further processing which can include planarization. Other embodiments include providing a substrate in a processing chamber and forming a copper seed layer on the substrate. The seed layer is implanted with barrier materials to form an implanted seed layer followed by bulk copper-containing layer formation. The substrate is annealed to form a final barrier layer. In a related embodiment the step of forming a seed layer is replaced with the steps of forming a first barrier layer on the substrate and forming a copper seed layer on the first barrier layer. After implantation of barrier material into the seed layer and bulk deposition of copper-containing material, the substrate is annealed to form a final barrier layer. In yet another related embodiment the step of forming a seed layer is replaced with the steps of forming a first barrier layer on the substrate and forming a second barrier layer on the first layer. A copper seed layer is formed on the second barrier layer. After implantation of barrier material into the seed layer and bulk deposition of copper-containing material, the substrate is annealed to form a final barrier layer.
Abstract:
A method for creating a highly reflective surface on an electroplated conduction layer. A barrier layer is deposited on a substrate using a self ionized plasma deposition process. The barrier layer has a thickness of no more than about one hundred angstroms. An adhesion layer is deposited on the barrier layer, using a self ionized plasma deposition process. A seed layer is deposited on the adhesion layer, also using a self ionized plasma deposition process, at a bias of no les than about one hundred and fifty watts. The combination of the barrier layer, adhesion layer, and seed layer is at times referred to herein as the barrier seed layer. The conduction layer is electroplated on the seed layer, thereby forming the highly reflective surface on the conduction layer, where the highly reflective surface has a reflectance of greater than about seventy percent.
Abstract:
A method of forming an electrically conductive interconnect on a substrate. An interconnection feature is formed on the substrate, and a first barrier layer is deposited on the substrate. The first barrier layer consists essentially of a diamond film. A seed layer consisting essentially of copper is deposited on the substrate, and a conductive layer consisting essentially of copper is deposited on the substrate. Thus, by using a diamond film as the barrier layer, diffusion of the copper from the conductive layer into the material of the substrate is substantially reduced and preferably eliminated.