Abstract:
A drying machine system utilizing a gas turbine, comprising a gas turbine, a power generator operated thereby, and a waste heat recovering means for recovering heat from exhaust gases from the gas turbine and feeding it to a drying machine, characterized in that the gas turbine is composed of a plurality of unlubricated type micro-gas turbines and the waste heat recovering means is composed of a waste gas feed passageway for feeding waste gases from the gas turbine directly to the drying machine; and a method of use of a drying machine system utilizing the gas turbine. An efficient facility and an efficient method of use are provided wherein the gas turbine is in the form of a plurality of small-sized micro-gas turbines and the turbine shaft bearings are of the type dispensing with lubricating oil, resulting in clean exhaust gases, whereby high temperature exhaust gases can be reused with high efficiency.
Abstract:
A housing assembly includes first and second sides and first and second panels spaced apart from each other by an interior of the housing and traversing the first and second sides. A first porous desiccant retention plate and a second porous desiccant retention plate are spaced from each other are secured within the housing so as to define a desiccant chamber therebetween for maintaining the desiccant medium. An opening is formed within one of said panels in a location corresponding to the location of the desiccant chamber, facilitating replacement of the desiccant medium within the desiccant chamber.
Abstract:
A web converting process and apparatus employing a dry converting station and substrate-handling equipment for conveying the substrate through the dry converting station. The substrate is enveloped in the dry converting station by a close enclosure supplied with one or more streams of conditioned gas flowing at a rate sufficient to reduce materially the particle count in the close enclosure.
Abstract:
A laundry drier control method reads a temperature variation rate per unit time, to enable drying according to the amount and type of an object being dried. The method includes steps of initiating a drying procedure; measuring a temperature variation rate per unit time over the drying procedure; calculating an overall drying time based on the measured temperature variation rate per unit time; and performing the drying procedure for the calculated overall drying time. The drying time determining step is repeated if a substantial increase in the temperature variation rate is detected.
Abstract:
A method and apparatus for producing an optical fiber preform including a metal remover, which operates by adsorption, that removes gaseous transition metal impurities present in a process gas to be provided to a furnace for drying, doping or consolidation. The apparatus and method may reduce attenuation of the resultant optical fiber drawn from the preform.
Abstract:
A system for separating hydrocarbons from a material which includes a process chamber, a process pan operatively connected to the process chamber and removable therefrom, a blower operatively connected to the process chamber and to a heat source, the blower adapted to force heated air into the process chamber through the material disposed on the process pan, the forced heated air adapted to vaporize hydrocarbons and other contaminants disposed on the material, and at least one condenser operatively connected to the process chamber and adapted to condense the vaporized hydrocarbons and other contaminants is disclosed. Further, a method for separating hydrocarbons from a material which includes passing a stream of heated air over the material to volatilize the hydrocarbons, passing the stream of heated air containing the hydrocarbons through at least one condenser to form liquid hydrocarbons, collecting the liquid hydrocarbons, and recirculating the heated air is disclosed.
Abstract:
The invention describes a method for the drying of a damp material (2), whereby the material (2) is treated in a treatment chamber (15) of a drying cabinet (1) in a mechanically immobile condition, in which air (10) is directed through the treatment chamber (15) and over a condenser (13) and the moisture in the air (10) can condense at the condenser (13) and be led away. The air (10) is led about the material (2) for drying at least during a period of the drying of the material (2) in a closed loop through the treatment chamber (15) in which the material (2) at increasing temperature in the treatment chamber (15) is exposed to steam or increased humidity generated at least partly from the dampness of the material (2) or the increased humidity of the air (10) circulating around and is relaxed and smoothed by the steam or the increased humidity in relation to creases, folds or similar from preceding treatments, and with an increasing dehumidify of the residual humidity of the air (10) after the beginning of the condensation at the condenser (13) the material (2) then is freed from creases, folds or similar and therefore is then dried largely without ironing. Further the invention describes a drying cabinet (1) for the drying of the damp material (2) is treated in a treatment chamber (15) of a drying cabinet (1) in mechanically immobile condition which shows flaps (21, 22) to be switched between the circulation in the closed circulation and a treatment in the open circulation which make possible an introduction and exhausting from external air.
Abstract:
Examples of dehumidifying processes for clothes include spinning, extracting the moisture by pressure, or drying the clothes using heat and air. To dehumidify the clothes gently and economically in terms of energy consumption, a method and apparatus for dehumidifying clothes includes bringing the clothes into contact with at least one absorption body of an absorbent material. Advantageously, a rotating absorbent body is used, its sections being continuously alternately brought into contact with an item of clothing and dehumidified by pressing.
Abstract:
A method of treating drill cuttings containing a detectable amount of hydrocarbon-based drilling fluid comprises injecting a non-toxic additive to the cuttings and mixing the cuttings and additive to the point where the amount of hydrocarbon-based drilling fluid is less than 1% by weight. The method of treating cuttings includes the additional step of taking the mixture of cuttings and additive and disposing of the mixture directly to the soil, preferably in the immediate vicinity of the well site. A system is provided for carrying out the method, including structure for adding a quantity of an chemical additive to cuttings carrying a quantity of drilling fluid. The system further provides a controller to determine the cuttings load within the system, and controls to vary the quantity of treatment chemicals added to the cuttings according to the cuttings load.
Abstract:
A method and apparatus for heating and cooling a substrate are provided. A chamber is provided that comprises a heating mechanism adapted to heat a substrate positioned proximate the heating mechanism, a cooling mechanism spaced from the heating mechanism and adapted to cool a substrate positioned proximate the cooling mechanism, and a transfer mechanism adapted to transfer a substrate between the position proximate the heating mechanism and the position proximate the cooling mechanism.