Abstract:
The present invention relates to a secondary battery that is capable of preventing short circuit from occurring when a nail test is performed. Also, the secondary battery includes a case accommodating an electrolyte and an electrode assembly therein, and the case includes an external layer exposed to the outside, an internal layer disposed in the case, and a short-circuit prevention layer provided in a liquid phase between the external layer and the internal layer.
Abstract:
Provided are a method of preparing iron oxide nanoparticles, iron oxide nanoparticles prepared thereby, and an anode material including the iron oxide nanoparticles.
Abstract:
A method of preparing an electrode for a secondary battery including: (a) a process of partially coating an electrode slurry containing an electrode mixture and a solvent on an electrode sheet so that coated portions are positioned with an uncoated portion interposed therebetween; (b) a process of drying the coated portions to remove the solvent; and (c) a process of rolling the dried coated portions, wherein a thickness of the coated portion is decreased and the electrode mixture moves to the uncoated portions, resulting in the coated portions disappearing, in the process (c).
Abstract:
Disclosed is a lithium-cobalt based complex oxide represented by Formula 1 below including lithium, cobalt and manganese wherein the lithium-cobalt based complex oxide maintains a crystal structure of a single O3 phase at a state of charge (SOC) of 50% or more based on a theoretical amount: LixCo1-y-zMnyAzO2 (1) wherein 0.95≤x≤1.15, 0
Abstract:
Provided are a method of preparing iron oxide nanoparticles, iron oxide nanoparticles prepared thereby, and an anode material including the iron oxide nanoparticles.
Abstract:
Disclosed is a lithium-cobalt based complex oxide represented by Formula 1 below including lithium, cobalt and manganese wherein the lithium-cobalt based complex oxide maintains a crystal structure of a single O3 phase at a state of charge (SOC) of 50% or more based on a theoretical amount: LixCo1-y-zMnyAzO2 (1) wherein 0.95≦x≦1.15, 0≦y≦0.3 and 0≦z≦0.2; and A is at least one element selected the group consisting of Al, Mg, Ti, Zr, Sr, W, Nb, Mo, Ga, and Ni.
Abstract:
The present invention relates to an electrode coating apparatus that is capable of adjusting a temperature of electrode slurry. Also, the electrode coating apparatus for applying electrode slurry to an electrode collector includes a storage part storing the electrode slurry, a discharge part discharging the electrode slurry stored in the storage part to the electrode collector, and a heating part heating the discharge part.
Abstract:
A lithium ion secondary battery including a plurality of electrode laminates, each electrode laminate including a positive electrode, a separator, and a negative electrode being alternatively laminated, each positive electrode and negative electrode having respective positive and negative electrode tabs protruding from a respective line segment, the positive electrode tabs of adjacent electrode laminates face each other and are connected to each other to provide a positive electrode tab bundle and the negative electrode tabs of the adjacent electrode laminates face each other and are connected to each other to provide a negative electrode tab bundle.
Abstract:
Disclosed herein is a secondary battery electrode manufacturing device including a slurry supply unit for supplying a secondary battery electrode mixture slurry, an electrode mixture layer forming mold configured to have a hollow structure having a first open surface and a second open surface, the first open surface and the second open surface being opposite each other, the electrode mixture slurry supplied from the slurry supply unit being injected into a hollow region of the electrode mixture layer forming mold, a drying unit for drying the electrode mixture slurry injected into the hollow region of the electrode mixture layer forming mold, a press for pressing the dried electrode mixture slurry to form an electrode mixture layer sheet, and a mold support unit for supporting the electrode mixture layer forming mold in the state in which the top surface of the mold support unit faces the first open surface of the electrode mixture layer forming mold.
Abstract:
Disclosed is a lithium-cobalt based complex oxide represented by Formula 1 below including lithium, cobalt and manganese wherein the lithium-cobalt based complex oxide maintains a crystal structure of a single O3 phase at a state of charge (SOC) of 50% or more based on a theoretical amount: LixCo1-y-zMnyAzO2 (1) wherein 0.95≤x≤1.15, 0