Abstract:
Disclosed herein is a battery cell configured such that an electrode assembly having a positive electrode/separator/negative electrode structure is received in an electrode assembly receiving part formed in a pouch-type battery case in a sealed state together with an electrolyte, wherein the battery case is provided with sealed parts, formed by thermally welding the outer edge of the battery case in the state in which the electrode assembly is received in the battery case together with the electrolyte, one or more recesses are formed in opposite side sealed parts adjacent to an upper end sealed part, at which electrode terminals are located, and/or a lower end sealed part in a state in which the recesses are formed from outsides of the side sealed parts toward a vertical middle axis of the battery cell so as to prevent wrinkles from being formed in the sealed parts of the battery case when the battery cell is bent, and portions of the side sealed parts in which the recesses are located are sealed at a higher sealing temperature than the remaining portions of the side sealed parts.
Abstract:
Disclosed are a method for forming a pattern for liquid crystal orientation of a zenithal bi-stable liquid crystal panel, a liquid crystal orientation substrate including the pattern formed thereby, and a mask substrate used for forming the pattern. The method includes: (a) depositing a silicon-based compound on a silicon substrate, (b) forming a guide pattern on an upper portion of the deposited silicon-based compound layer by using an imprint lithography, (c) discontinuously exposing the silicon substrate by transferring a pattern from the guide pattern onto the silicon-based compound layer by dry etching, (d) forming a pattern in an asymmetrical form on the silicon substrate by wet etching, (e) removing the part of the remaining silicon-based compound layer, and then hydrophobically treating a pattern surface of the silicon substrate; and (f) transferring a pattern in an asymmetrical form onto a glass substrate by disposing the surface-treated silicon substrate to face the glass substrate, and supplying a dielectric therebetween.
Abstract:
The present invention relates to a method of welding an electrode tab which welds an electrode tab and a current collecting layer by using a pulsed laser beam, and a cable type rechargeable battery including an electrode manufactured according to the same.
Abstract:
Disclosed herein is a battery cell having an electrode assembly mounted in a variable cell case in a state in which the electrode assembly is impregnated with an electrolyte, the battery cell being configured to be flexibly deformed in response to the shape of a device, in which the battery cell is mounted, wherein a coating part including inert particles is formed on at least one outer surface of the electrode assembly.
Abstract:
Disclosed herein is a battery case made of a laminate sheet including an outer coating layer made of a weather-resistant polymer, an inner sealant layer made of a thermally bondable polymer, and a barrier layer interposed between the outer coating layer and the inner sealant layer, wherein an electrode assembly configured to be bent or curved in conformity with the shape of a device, in which a battery cell is mounted, is received in the battery case, and a pattern is formed on at least one surface of the battery case that faces an outer surface of the electrode assembly.
Abstract:
Disclosed is a battery including a cathode in which cathode active-material coating layers provided on both surfaces of a cathode collector are longitudinally deviated from each other, and an anode having at least one anode active-material coating layer provided on an anode collector, the cathode and anode being wound to face each other with a separator interposed therebetween. At least one of a winding beginning portion and winding ending portion of the cathode is provided with a cathode uncoated part for installation of a cathode lead. An insulator tape is attached to the boundary of the cathode active-material coating layer at a position where the anode active-material coating layer faces a non-coating part of the cathode not containing the cathode active-material coating layer, achieving enhanced electrical insulation capability and consequential safety of the battery.
Abstract:
The present invention relates to a lithium secondary battery, and more specifically to a lithium secondary battery having a multi-directional lead-tab structure. The lithium secondary battery of the present invention includes: an electrode assembly which is formed by alternately laminating an electrode plate having a current collector, an active material, and a tab, and an isolation layer; a lead which is electrically connected to the tab; and a battery case, wherein the lead is divided into an anode lead and a cathode lead, and at least two or more anode leads and cathode leads are provided. The battery of the present invention uses the same lead-tab size as the prior art and is suitable for use with high current.
Abstract:
A method of deriving an appropriate condition for cutting a polarizing plate, the method including: (a) preparing a polarizing plate including an adhesive layer and having a cut surface; (b) providing the polarizing plate so that one end of the polarizing plate adjoins a guide unit; (c) moving the polarizing plate on the guide unit; (d) measuring frictional force applied between the polarizing plate and the guide unit while moving the polarizing plate; and (e) deriving the appropriate condition for cutting the polarizing plate based on the measured value of the frictional force and a predetermined adhesive agent leakage determination criterion based on the frictional force.