Abstract:
The present invention relates to a pharmaceutical composition for preventing or treating diabetes or fatty liver, and more specifically relates to a pharmaceutical composition for preventing or treating diabetes or fatty liver containing a CYP4A (cytochrome P450A) inhibitor as an active ingredient. According to the present invention, the CYP4A inhibitor suppresses endoplasmic reticulum stress, reduces the blood insulin concentration and suppresses apoptosis of liver cells, and hence exhibits effects in preventing or treating diabetes or fatty liver.
Abstract:
Disclosed is an economic method for concentrating virus and detecting virus, such that virus in a sample solution having low virus concentration can be concentrated with high efficiency within a short time. Particularly, the method comprising the steps of: (A) adding Concanavalin A (Con A) to a sample solution containing a virus, and reacting the added Concanavalin A with the virus in the sample solution to form a virus-Concanavalin A conjugate; and (B) separating the virus-Concanavalin A conjugate from the sample solution.
Abstract:
The present invention relates to a pharmaceutical composition for preventing or treating diabetes or fatty liver, and more specifically relates to a pharmaceutical composition for preventing or treating diabetes or fatty liver containing a CYP4A (cytochrome P450A) inhibitor as an active ingredient. According to the present invention, the CYP4A inhibitor suppresses endoplasmic reticulum stress, reduces the blood insulin concentration and suppresses apoptosis of liver cells, and hence exhibits effects in preventing or treating diabetes or fatty liver.
Abstract:
Disclosed herein are a norovirus detection sensor and an electrochemical sensing method using the sensor. Specifically, in the norovirus detection sensor including a bioreceptor and a signal detector, a three-dimensional gold nanosurface electrode is used as a substrate, and the bioreceptor employs concanavalin A as a sample capture agent immobilized to the substrate and capable of binding to norovirus. Therefore, the norovirus detection sensor has improved sensitivity by employing the three-dimensional gold nanosurface electrode having a wide surface area. In addition, the norovirus detection sensor has effects of reducing manufacturing costs using a non-antibody material, i.e., concanavalin A which is inexpensive and readily available.
Abstract:
Disclosed is an economic method for concentrating virus and detecting virus, such that virus in a sample solution having low virus concentration can be concentrated with high efficiency within a short time. Particularly, the method comprising the steps of: (A) adding Concanavalin A (Con A) to a sample solution containing a virus, and reacting the added Concanavalin A with the virus in the sample solution to form a virus-Concanavalin A conjugate; and (B) separating the virus-Concanavalin A conjugate from the sample solution.