Abstract:
Disclosed are an image processing method and device using a line-wise operation. The image processing device, according to one embodiment, comprises: a receiver for receiving an image; at least one first line buffer for outputting the image into a line-wise image line; a first convolution operator for generating a feature map by performing a convolution operation on the basis of the output from the first line buffer; and a feature map processor for storing the output from the first convolution operator in units of at least one line, and processing so as to output the feature map stored in units of at least one line into a two-dimensional form, wherein at least one convolution operation operates in the form of a pipeline.
Abstract:
Disclosed are an encoding device and a decoding device, which include a CNN-based in-loop filter. The encoding device according to one embodiment comprises: a filtering unit for generating filtering information by filtering a residual image corresponding to a difference between an original image and a prediction image; an inverse filtering unit for generating inverse filtering information by inversely filtering the filtering information; a prediction unit for generating the prediction image on the basis of the original image and reconstruction information; a CNN-based in-loop filter for receiving the inverse filtering information and the prediction image so as to output the reconstruction information; and an encoding unit for performing encoding on the basis of the filtering information and information of the prediction image.
Abstract:
Disclosed are a method of encoding a division block in video encoding and a method of decoding a division block in video decoding. An input picture is divided into encoding unit blocks. The encoding unit blocks are divided into sub-blocks. The sub-blocks are encoded by selectively using at least one of intra prediction encoding and inter prediction encoding. A decoding process is performed through a reverse process of the encoding method. When pixel values of an encoding unit block are encoded in video encoding, the flexibility in selecting an encoding mode is increased and the efficiency of encoding is increased.
Abstract:
The present invention provides an image decoding method based on a low-complexity transformation, characterised by comprising the steps of: executing a transformation with respect to a residual block based on a first transformation kernel; and executing a transformation with respect to the transformed residual block based on a second transformation kernel having low-complexity, wherein the first transformation kernel is derived based on a prediction block or an encoding unit block.
Abstract:
Disclosed are a method of encoding a division block in video encoding and a method of decoding a division block in video decoding. An input picture is divided into encoding unit blocks. The encoding unit blocks are divided into sub-blocks. The sub-blocks are encoded by selectively using at least one of intra prediction encoding and inter prediction encoding. A decoding process is performed through a reverse process of the encoding method. When pixel values of an encoding unit block are encoded in video encoding, the flexibility in selecting an encoding mode is increased and the efficiency of encoding is increased.
Abstract:
Disclosed are a method of encoding a division block in video encoding and a method of decoding a division block in video decoding. An input picture is divided into encoding unit blocks. The encoding unit blocks are divided into sub-blocks. The sub-blocks are encoded by selectively using at least one of intra prediction encoding and inter prediction encoding. A decoding process is performed through a reverse process of the encoding method. When pixel values of an encoding unit block are encoded in video encoding, the flexibility in selecting an encoding mode is increased and the efficiency of encoding is increased.
Abstract:
Provided are a method and an apparatus for performing scalable video decoding, wherein the method and the apparatus down-sample input video, determine the down-sampled input video as base layer video, generate prediction video for enhancement layer video by applying an up-scaling filter to the base layer video, and code the base layer video and the prediction video, wherein the up-scaling filter is a convolution filter of a deep neural network.
Abstract:
Disclosed are a method of encoding a division block in video encoding and a method of decoding a division block in video decoding. An input picture is divided into encoding unit blocks. The encoding unit blocks are divided into sub-blocks. The sub-blocks are encoded by selectively using at least one of intra prediction encoding and inter prediction encoding. A decoding process is performed through a reverse process of the encoding method. When pixel values of an encoding unit block are encoded in video encoding, the flexibility in selecting an encoding mode is increased and the efficiency of encoding is increased.
Abstract:
Disclosed decoding method of the intra prediction mode comprises the steps of: determining whether an intra prediction mode of a present prediction unit is the same as a first candidate intra prediction mode or as a second candidate intra prediction mode on the basis of 1-bit information; and determining, among said first candidate intra prediction mode and said second candidate intra prediction mode, which candidate intra prediction mode is the same as the intra prediction mode of said present prediction unit on the basis of additional 1-bit information, if the intra prediction mode of the present prediction unit is the same as at least either the first candidate intra prediction mode or the second candidate intra prediction mode, and decoding the intra prediction mode of the present prediction unit.
Abstract:
Disclosed decoding method of the intra prediction mode comprises the steps of: determining whether an intra prediction mode of a present prediction unit is the same as a first candidate intra prediction mode or as a second candidate intra prediction mode on the basis of 1-bit information; and determining, among said first candidate intra prediction mode and said second candidate intra prediction mode, which candidate intra prediction mode is the same as the intra prediction mode of said present prediction unit on the basis of additional 1-bit information, if the intra prediction mode of the present prediction unit is the same as at least either the first candidate intra prediction mode or the second candidate intra prediction mode, and decoding the intra prediction mode of the present prediction unit.