Abstract:
According to one aspect of the invention, there is provided a method for monitoring hemodynamics, comprising the steps of: acquiring information on a posture of a first subject wearing a monitoring device; estimating a motion artifact predicted to be included in a spectroscopic measurement signal from the first subject which is measured by the monitoring device, with reference to the acquired information on the posture of the first subject, and a motion artifact estimation model for defining a correlation between a posture of at least one subject and a motion artifact occurring in a signal measured from the at least one subject; and removing the estimated motion artifact from the measurement signal from the first subject.
Abstract:
The present invention relates to a waveguide for transmission of electromagnetic wave signals. According to one aspect of the invention, there is provided a waveguide for transmission of electromagnetic wave signals, comprising: a dielectric part comprising two or more dielectrics having different permittivity; and a conductor part surrounding at least a part of the dielectric part.
Abstract:
Disclosed are an optical spectroscopy system using a pipeline-structured matched filter and a dual-slope analog digital converter, and a method for controlling the optical spectroscopy system. The optical spectroscopy system may comprise: a pipeline-structured matched filter sequentially connecting input voltage, transmitted by means of an amplifier, to a first capacitor and a second capacitor by means of a first switch terminal; and a dual-slope analog digital converter for sequentially receiving, by means of a second switch terminal, the electric charge stored in the first capacitor and second capacitor, and digitizing the input voltage.
Abstract:
A variable-precision distributed arithmetic (VPDA) multi-input multi-output (MIMO) equalizer is presented to reduce the size and dynamic power of 112 Gbps dual-polarization quadrature phase-shift-keying (DP-QPSK) coherent optical communication receivers. The VPDA MIMO equalizer compensates for channel dispersion as well as various non-idealities of a time-interleaved successive approximation register (SAR) based analog-to-digital converter (ADC) simultaneously by using a least mean square (LMS) algorithm. As a result, area-hungry analog domain calibration circuits are not required. In addition, the VPDA MIMO equalizer achieves 45% dynamic power reduction over conventional finite impulse response (FIR) to equalizers by utilizing the minimum required resolution for the equalization of each dispersed symbol.
Abstract:
According to one aspect of the invention, there is provided a waveguide for transmission of electromagnetic wave signals, comprising: a first dielectric part comprising a dielectric; a conductor part covering a part of the first dielectric part; and a second dielectric part surrounding the first dielectric part and the conductor part.
Abstract:
Disclosed is a chip-to-chip interface using a microstrip circuit and a dielectric waveguide. A board-to-board interconnection device, according to one embodiment of the present invention, comprises: a waveguide which has a metal cladding and transmits a signal from a transmitter-side board to a receiver-side board; and a microstrip circuit which is connected to the waveguide and has a microstrip-to-waveguide transition (MWT), wherein the microstrip circuit matches a microstrip line and the waveguide, adjusts the bandwidth of a predetermined first frequency band among the frequency bands of the signal, and provides same to the receiver.
Abstract:
Disclosed is a printed circuit board (PCB) structure, in which an electromagnetic signal transmitting antenna and/or an electromagnetic signal receiving antenna, and an electromagnetic signal transferring tunnel (EM-tunnel) are embedded, the PCB structure including a PCB, an EM-tunnel that includes a dielectric core and a metal clad that surrounds the dielectric core and that is embedded in the PCB to be parallel to the PCB, and at least one transmitting antenna and/or at least one receiving antenna that are embedded in the PCB, wherein the transmitting antenna and/or the receiving antenna are arranged at an input port and an output port of the EM-tunnel embedded in the PCB to transmit and receive electromagnetic signals to and from the interior of the EM-tunnel.
Abstract:
The present invention relates to a microstrip circuit and a chip-to-chip interface apparatus comprising the same. According to one aspect of the invention, there is provided a microstrip circuit. The microstrip circuit includes a feeding line providing a signal, a probe being connected to one end of the feeding line, and a patch emitting the signal to a waveguide. The patch is disposed in a layer opposite to a layer in which the feeding line and the probe are disposed, with a core substrate being positioned therebetween. At least one of length of the probe, thickness of the core substrate, and permittivity of the core substrate is determined based on bandwidth of a transition between the microstrip circuit and the waveguide.
Abstract:
There is provided a method of providing information about prognosis after cardiac arrest. The method includes the steps of: calculating biological information based on a signal relating to a hemoglobin concentration measured from a cerebral region of a subject to be measured; and providing the information about the prognosis after cardiac arrest of the subject with reference to the calculated biological information and a biomarker relating to the prognosis after cardiac arrest measured from a blood of the subject.
Abstract:
The present disclosure relates to a method and a system for standardizing a hemodynamics measurement result and a non-transitory computer-readable recording medium. According to one aspect of the present disclosure, provided is a method for standardizing a measurement result obtained from a device for monitoring hemodynamics, the method comprising the steps of: capturing an image of a subject wearing a monitoring device; defining a photogrammetric coordinate system on the captured image, and converting a preset local coordinate system on the monitoring device into the photogrammetric coordinate system; and converting the photogrammetric coordinate system into a standard coordinate system which is based on a standard space.