摘要:
Techniques for sending signaling messages with beacon signals in a wireless communication network are described. In one design, a transmitter station may map a signaling message (e.g., a reduce interference request) to multiple code symbols. The transmitter station may select multiple resource elements from among a plurality of resource elements based on the multiple code symbols. In one design, each code symbol may be sent across frequency by selecting one of multiple subcarriers in one symbol period. In another design, each code symbol may be sent across time by selecting one of multiple symbol periods on one subcarrier. The transmitter station may generate a beacon signal having transmit power on the selected resource elements and no transmit power on remaining resource elements. The transmitter station may send the beacon signal to at least one receiver station.
摘要:
Systems and methodologies are described that enable serving cell selection in a wireless network with a multiple antenna repeater operable to support MIMO communications. In one example, a repeater using orthogonal frequency division multiplexing on the downlink can be equipped to receive, by one or more receive antennas, one or more signals using one or more radio frequency (RF) isolation schemes. The repeater can further be equipped to amplify and delay the one or more signals using one or more combination schemes. Moreover, the repeater can be equipped to transmit, by one or more transmit antennas, the amplified and delayed one or more signals, wherein at least one of the one or more receive antennas or the one or more transmit antennas includes two or more antennas.
摘要:
Systems and methodologies are described that enable serving cell selection in a wireless network with a multiple antenna repeater operable to support MIMO communications. In one example, a repeater using orthogonal frequency division multiplexing on the downlink can be equipped to receive, by one or more receive antennas, one or more signals using one or more radio frequency (RF) isolation schemes. The repeater can further be equipped to amplify and delay the one or more signals using one or more combination schemes. Moreover, the repeater can be equipped to transmit, by one or more transmit antennas, the amplified and delayed one or more signals, wherein at least one of the one or more receive antennas or the one or more transmit antennas includes two or more antennas.
摘要:
Techniques for sending signaling messages with beacon signals in a wireless communication network are described. In one design, a transmitter station may map a signaling message (e.g., a reduce interference request) to multiple code symbols. The transmitter station may select multiple resource elements from among a plurality of resource elements based on the multiple code symbols. In one design, each code symbol may be sent across frequency by selecting one of multiple subcarriers in one symbol period. In another design, each code symbol may be sent across time by selecting one of multiple symbol periods on one subcarrier. The transmitter station may generate a beacon signal having transmit power on the selected resource elements and no transmit power on remaining resource elements. The transmitter station may send the beacon signal to at least one receiver station.
摘要:
Techniques for supporting operation of relay stations in wireless communication systems are described. In an aspect, a bitmap may be sent by a base station and/or a relay station to identify subframes of at least two types in multiple radio frames. For example, the bitmap may indicate whether each subframe covered by the bitmap is of a first type or a second type. UEs may use the bitmap to control their operation. For example, a UE may perform channel estimation or measurement for the subframes of the first type and may skip channel estimation and measurement for the subframes of the second type. In another aspect, a base station may transmit data and/or control information on resources not used by a relay station to transmit a reference signal. This may avoid interference to the reference signal from the relay station, which may improve performance for UEs communicating with the relay station.
摘要:
Systems and methodologies are described that facilitate improved resource partitioning and interference management in a wireless communication system. Techniques are described herein for the transmission and use of various types of signaling, such as Access Request commands, Reverse Link Special Resource Utilization Message (R-SRUM) signaling, Forward Link Special Resource Utilization Message (F-SRUM) signaling, and the like, for managing interference associated with range extension, restricted association networks, and other jamming scenarios. As described herein, downlink resource coordination and interference management are accomplished through the use of Access Request or R-SRUM signaling conducted in a unicast or broadcast fashion, and uplink resource coordination and interference management are accomplished through the use of F-SRUM signaling. As further described herein, a clean communication channel such as a Low Reuse Preamble (LRP) channel can be utilized for interference management signaling and/or leveraged for determining timing of various signaling messages.
摘要:
Techniques for supporting communication in a dominant interference scenario are described. A user equipment (UE) may communicate with a first base station and may observe high interference from and/or may cause high interference to a second base station. In one design, the first base station may use a first frequency band, which may overlap at least partially with a second frequency band for the second base station and may further extend beyond the second frequency band. The first base station may send at least one synchronization signal and a broadcast channel in a center portion of the first frequency band for use by UEs to detect the first base station. The second frequency band may be non-overlapping with the center portion of the first frequency band. The first base station may also communicate with at least one UE on the first frequency band.
摘要:
Aspects are disclosed for multiplexing disparate wireless terminals. Resource blocks are mapped according to a hopping pattern. A first and second pair of physical resource blocks are allocated such that the first pair is associated with a first hopping index pair, whereas the second pair is associated with a second hopping index pair. For this embodiment, the first and second hopping index pairs are inversely symmetrical to each other. A pair of distributed resource blocks is also allocated. An assignment is then scheduled that includes a physical resource allocation and a virtual resource allocation. Aspects for operating a wireless terminal are also disclosed. Here, a communication that includes a resource allocation and a reference signal is received. A minimum resource allocation granularity is ascertained from the communication, and a joint channel estimation is based on the reference signal and is a function of the minimum resource allocation granularity.
摘要:
Apparatus and methods for generation and use of reference signals in a wireless communications system are described. A group-specific reference signal pattern may be generated for provision to a group of UEs or terminals in communication with an eNodeB or base station. The reference signal may be generated based on system parameters. Reference signals may be generated to span multiple contiguous physical resource blocks.
摘要:
Techniques for supporting operation of relay stations in wireless communication systems are described. In an aspect, a base station may transmit data to a relay station in a portion of a subframe instead of the entire subframe. The relay station may transmit control information during part of the subframe. The base station may transmit data to the relay station during the remaining part of the subframe. In another aspect, a target termination for a packet may be selected based on data and/or ACK transmission opportunities available for the packet. One or more transmissions of the packet may be sent with HARQ, and ACK information may be sent for the packet. The packet may be transmitted such that it can be terminated prior to the first subframe (i) not available for sending the packet or (ii) available for sending ACK information.