Abstract:
The present invention discloses an apparatus and method for manufacturing ultra-fine particles using corona discharge capable of manufacturing the ultra-fine particles nanometers in size from a reaction gas using the corona discharge. In the apparatus for manufacturing ultra-fine particles of the present invention, a reaction gas feeder supplies a nozzle with reaction gas, and the reaction gas is injected. When a power supply applies a high voltage to the nozzle, the corona discharge occurs at the nozzle. Thus, the injected reaction gas is dissolved, and a large number of ultra-fine particles are produced. Then, a collection plate collects the ultra-fine particles. In addition, a duct encloses the nozzle, so that a passage is formed between the nozzle and duct. Sheath gas supplied to the passage of the duct forms a gas curtain between the nozzle and the collection plate, so that the gas curtain leads the flow of the ultra-fine particles. If other reaction gas is supplied to the passage of the duct and heat energy is supplied thereto, the other reaction gas reacts thermochemically, so that a large number of other ultra-fine particles are produced. The ultra-fine particles produced by the corona discharge are coated with the other ultra-fine particles. If the corona discharge is generated while the ultra-fine particles and the other reaction gas are injected by another nozzle positioned downstream of the nozzle, the ultrafine particles are coated with the other ultra-fine particles produced from the other reaction gas.
Abstract:
A soft X-ray photoionization charger includes a housing having a chamber and an aperture formed on one side surface of the housing and joined to the chamber. The chamber forms a flow path of an aerosol containing particles. A photoionizer is fixed to the aperture of the housing. The photoionizer includes a head for irradiating soft X-rays into the chamber to neutralize the particles. A transparent window is mounted between the chamber and the head. The transparent window is made of a material permitting passage of the soft X-rays. The photoionization charger further includes a soft support ring arranged around the transparent window and tightly fitted to the aperture.
Abstract:
Provided is apparatus for controlling flow rate of gases used in semiconductor device by differential pressure by generating differential pressure in a fluid path. A differential pressure generation element generates pressure difference in the fluid path of gases used in semiconductor device fabrication, a pressure, sensor which is installed at a bypass of the fluid path detects the pressure difference, and a central processing unit (CPU) measures and controls a flow rate of the gases, thereby the present invention is capable of controlling the flow rate precisely and rapidly, and enhancing the degree of purity of the gases by the filtering function of the differential pressure generation element itself.
Abstract:
The present invention discloses an apparatus and method for manufacturing ultra-fine particles using corona discharge capable of manufacturing the ultra-fine particles nanometers in size from a reaction gas using the corona discharge. In the apparatus for manufacturing ultra-fine particles of the present invention, a reaction gas feeder supplies a nozzle with reaction gas, and the reaction gas is injected. When a power supply applies a high voltage to the nozzle, the corona discharge occurs at the nozzle. Thus, the injected reaction gas is dissolved, and a large number of ultra-fine particles are produced. Then, a collection plate collects the ultra-fine particles. In addition, a duct encloses the nozzle, so that a passage is formed between the nozzle and duct. Sheath gas supplied to the passage of the duct forms a gas curtain between the nozzle and the collection plate, so that the gas gas is supplied to the passage of the duct and heat energy is supplied thereto, the other reaction gas reacts thermochemically, so that a large number of other ultra-fine particles are produced. The ultra-fine particles produced by the corona discharge are coated with the other ultra-fine particles. If the corona discharge is generated while the ultra-fine particles and the other reaction gas are injected by another nozzle positioned downstream of the nozzle, the ultrafine particles are coated with the other ultra-fine particles produced from the other reaction gas.
Abstract:
The present invention discloses apparatus and method for rapidly and easily measuring the numbers and size distribution of low concentration particles which exist in a clean space such as a clean room. The apparatus and method according to the present invention measures the numbers of particles by charging particles to a monopolarity, collecting the particles by applying a voltage to an electrode and attaching the charged particles of a certain size or less thereto, separating the charged particles of the certain size or more according to size by the particle separating ducts. The apparatus for measuring the number of particles according to the present invention makes it possible to obtain a size distribution of particles in the air by a single measurement and to rapidly and easily measure it even though the number of the particles in the air is small.
Abstract:
Provided is an exhaust unit capable of preventing large pressure fluctuations within a process chamber due to atmospheric pressure changes. The exhaust unit includes a main exhaust duct and a supplemental exhaust duct that acts as a partial bypass. A flap is located at a downstream opening between the main exhaust duct and supplemental exhaust duct and controls the amount of bypassed gas flowing from the supplemental exhaust duct to the main exhaust duct. First and second plates of the flap are pivotally coupled to the main exhaust duct adjacent the downstream opening, the first plate colliding with gas flowing through the main exhaust duct and the second plate partially blocking bypassed gas flowing back into the main exhaust duct from the supplemental exhaust duct. When gas is exhausted through the main exhaust line and the supplemental exhaust duct, the flap passively controls the amount by which the supplemental exhaust duct is opened through fluctuations in atmospheric pressure.
Abstract:
The present invention discloses apparatus and method for rapidly and easily measuring the numbers and size distribution of low concentration particles which exist in a clean space such as a clean room. The apparatus and method according to the present invention measures the numbers of particles by charging particles to a monopolarity, collecting the particles by applying a voltage to an electrode and attaching the charged particles of a certain size or less thereto, separating the charged particles of the certain size or more according to size by the particle separating ducts. The apparatus for measuring the number of particles according to the present invention makes it possible to obtain a size distribution of particles in the air by a single measurement and to rapidly and easily measure it even though the number of the particles in the air is small.
Abstract:
An ultra-fine particle manufacturing apparatus and method is capable of producing nanometer-sized ultra-fine particles from reaction gases with high energy light beams, corona discharge and an electric field. High energy light beams are irradiated into a chamber of a housing through the use of a high energy light source. Reaction gases are supplied from a reaction gas supply device to a reaction gas inlet tube. The reaction gases are then introduced through the reaction gas inlet tube into the chamber of the housing to produce a large quantity of ultra-fine particles through the reaction of the reaction gases with the high energy light beams. A voltage is applied to the reaction gas inlet tube by means of a power supply device. The ultra-fine particles flowing within the chamber of the housing are collected by means of a collecting plate.
Abstract:
The present invention relates to a high flow particles atomizer for atomizing a liquid and drying atomized particles to produce the atomized particles at high flow rate. The atomizer of the present invention comprises a container for containing liquid to be atomized, a nozzle positioned at the center above a liquid surface of the liquid contained in the container for injecting a large amount of gas, a liquid supply device for supplying the liquid into the gas injected by the nozzle, and an atomized particle discharge tube communicating with the container for allowing atomized particles injected by the nozzle to be discharged to the outside of the container. In addition, the atomizer further comprises a drying device for drying the atomized particles discharged through the atomized particle discharge tube.
Abstract:
Provided is apparatus for controlling flow rate of gases used in semiconductor device by differential pressure by generating differential pressure in a fluid path. A differential pressure generation element generates pressure difference in the fluid path of gases used in semiconductor device fabrication, a pressure, sensor which is installed at a bypass of the fluid path detects the pressure difference, and a central processing unit (CPU) measures and controls a flow rate of the gases, thereby the present invention is capable of controlling the flow rate precisely and rapidly, and enhancing the degree of purity of the gases by the filtering function of the differential pressure generation element itself.