Abstract:
Provided is a method of producing a metal-plastic multi-layered hybrid structure by using laser three-dimensional (3D) printing, the method including printing a metal structure on a substrate by using a first laser, patterning an upper surface of the metal structure by using the first laser, printing a polymer bonding layer on the patterned metal structure by using the first laser, and printing a polymer structure on the polymer bonding layer by using a second laser having a wavelength longer than a wavelength of the first laser, wherein the printing of the polymer bonding layer includes forming an intermediate phase at an interface between the metal structure and the polymer bonding layer. A layered structure produced using the above method may include the intermediate phase having the effect of an oxygen inclusion connecting a metal and a polymer.
Abstract:
The present invention relates to a 3D printer polymer filament improving strength of a polymer resin and providing durability by using graphene coated metal nanoparticles and carbon nanotubes, and expressing a function of the graphene coated metal nanoparticles and the carbon nanotubes as a filler, and a manufacturing method thereof.Accordingly, according to the present invention, the 3D printer polymer filament and the manufacturing method includes mixing the graphene coated metal nanoparticles, the carbon nanotubes, and the polymer, using the manufactured mixture to form a filament through extrusion, and forming a 3D printed article by using the filament, thereby improving the strength and the durability by using the graphene coated metal nanoparticles and the carbon nanotubes.
Abstract:
Disclosed are lignin microcapsules including lignin as a shell material and at least one of oil and a carbonaceous material as a core material. The lignin microcapsules may be formed by carried out polymerization in an oil-in-water emulsion including lignin, oil and water and further including a carbonaceous material. Since lignin has a phenol structure, the microcapsules including lignin may be formed to have antibacterial property. Thus, the lignin microcapsules may be used widely in various fields, such as additives for composite materials.
Abstract:
Disclosed is an ultrafine fiber including lignin, a carrier polymer and a carbon material. The ultrafine fiber, which includes lignin, can exhibit the properties of lignin such as antibacterial property, biodegradability, etc. Accordingly, it can be used widely in medical materials such as nanofiber, nanofiber web, nanofiber sheet, etc. for wound healing of the skin's dermal layer. Also, the ultrafine fiber can be used in sheath of electric cables because it contains a carbon material and has superior conductivity. In addition, because the ultrafine fiber can hold a large quantity of water, it can be used in various fields including sanitary pads for women, diapers for babies and adults, etc.
Abstract:
Disclosed is a composite of filler and polymer resin and a method for preparing the same, including preparing a thermoplastic resin composition by mixing a polymerization catalyst with a polymerizable thermoplastic resin, preparing a pre-pellet including a filler and a polymer resin by mixing a filler with the thermoplastic resin composition and heating to perform in-situ polymerization of the polymerizable thermoplastic resin to the polymer resin, and compounding the pre-pellet or the pre-pellet to which a polymer resin is further added to be pelletized.