Abstract:
An apparatus (130) and method for automatically or semi-automatically controlling a collimator (COL) of an x-ray imager (100) to collimate imager (100)'s x-ray beam and adjusting an alignment of the x-ray imager (100) in respect of an object (PAT). The collimation and alignment operation is based on 3D image data (3DI) of the object (PAT) to be imaged. The 3D image data (3DI) is acquired by a sensor (S). The sensor (S) operates on non-ionizing radiation. The 3D image data (3DI) describes a shape in 3D of the object (PAT) and anatomic landmarks are derived therefrom to define a collimation window (W) for a region of interest (ROI). Based on the collimation window (W) the collimator (COL)'s setting and imager (100) alignment is adjusted accordingly.
Abstract:
An apparatus (130) and method for automatically or semi-automatically controlling a collimator (COL) of an x-ray imager (100) to collimate imager (100)'s x-ray beam and adjusting an alignment of the x-ray imager (100) in respect of an object (PAT). The collimation and alignment operation is based on 3D image data (3DI) of the object (PAT) to be imaged. The 3D image data (3DI) is acquired by a sensor (S). The sensor (S) operates on non-ionizing radiation. The 3D image data (3DI) describes a shape in 3D of the object (PAT) and anatomic landmarks are derived therefrom to define a collimation window (W) for a region of interest (ROI). Based on the collimation window (W) the collimator (COL)'s setting and imager (100) alignment is adjusted accordingly.
Abstract:
The present invention relates to an X-ray radiograph apparatus (10). It is described to placing (110) an X-ray source (20) relative to an X-ray detector (30) to form an examination region for the accommodation of an object, wherein, a reference spatial coordinate system is defined on the basis of geometry parameters of the X-ray radiography apparatus. A camera (40) is located (120) at a position and orientation to view the examination region. A depth image of the object is acquired (130) with the camera within a camera spatial coordinate system, wherein within the depth image pixel values represent distances for corresponding pixels. A processing unit (50) transforms (140), using a mapping function, the depth image of the object within the camera spatial coordinate system to the reference spatial coordinate system, wherein, the camera position and orientation have been calibrated with respect to the reference spatial coordinate system to yield the mapping function that maps a spatial point within the camera spatial coordinate system to a corresponding spatial point in the reference spatial coordinate system. A synthetic image is generated (150) within the reference spatial coordinate system. The synthetic image is output (160) with an output unit (60).
Abstract:
A system and method are provided for selecting an acquisition parameter for an imaging system. The acquisition parameter at least in part defines an imaging configuration of the imaging system during an imaging procedure with a patient. A depth-related map is accessed which is generated on the basis of sensor data from a camera system, wherein the camera system has a field of view which includes at least part of a field of view of the imaging system, wherein the sensor data is obtained before the imaging procedure with the patient and indicative of a distance that parts of the patient's exterior have towards the camera system. A machine learning algorithm is applied to the depth-related map to identify the acquisition parameter, which may be provided to the imaging system.
Abstract:
A method and system for processing a radiography image derived from an X-ray radiation passing through an object. The method includes acts of estimating, based on the radiography image, a scatter signal present in said radiography image; calculating, based on the estimated scatter signal, a scatter removal signal indicative of a scattered radiation removable from the X-ray radiation passing through the object by a reference anti-scatter device; and correcting the radiography image based on the scatter removal signal.