Abstract:
The present disclosure describes ultrasound imaging systems and methods that may be used to image breast tissue. An ultrasound imaging system according to one embodiment may include a user interface comprising a display, a processor operatively connected to the user interface, and memory comprising processor-executable instructions, which when executed by the processor cause the user interface to display a first ultrasound image of a breast on the display and receive an indication of a first region of interest (ROI) in the first ultrasound image. The memory may include instructions to further cause the user interface to display a second ultrasound image of the breast on the display and receive an indication of a second region of interest in the second ultrasound image. The processor may be configured to determine locations of the first and second regions of interest based on probe position data associated with the first and second images, respectively and cause the user interface to display a visual indication of a relative distance between the first and second regions of interest if the relative distance is less than or equal to a predetermined amount.
Abstract:
Systems, devices, and methods for ultrasonic imaging by sparse sampling are provided. In one embodiment, an ultrasound imaging system comprises an array of ultrasound transducer elements, electronic circuitry in communication with the array of ultrasound transducer elements and configured to select a first receive aperture of the array comprising a plurality of contiguous ultrasound transducer elements and at least one non-contiguous ultrasound transducer element, and a beamformer in communication with the electronic circuitry. Each ultrasound transducer element of the first receive aperture is configured to receive reflected ultrasound echoes and generate an electrical signal representative of imaging data. The beamformer is configured to receive the electrical signals generated by the first receive aperture and apply different weight to the electrical signals generated by the contiguous ultrasound transducer elements and the electrical signal generated by the at least one non-contiguous ultrasound transducer element.
Abstract:
The present invention relates to an ultrasound imaging system (10) comprising an ultrasound probe (20) having a transducer array (21) configured to provide an ultrasound receive signal. The system further comprises a B-mode volume processing unit (30) configured to generate a B-mode volume (31) based on the ultrasound receive signal, and a B-mode image processing unit (40) configured to provide a current B-mode image (41) based on the B-mode volume (31). The system further comprises a memory (50) configured to store a previously acquired 3D-vessel map (51). Also, the system comprises a registration unit (60) configured to register the previously acquired 3D-vessel map (51) to the B-mode volume (31) and to select a portion (61) of the 3D-vessel map corresponding to the current B-mode image (41). Further, the system comprises a display configured to display an ultrasound image (71) based on the current B-mode image (41) and the selected portion (61) of the 3D-vessel map (51). The present invention further relates to a method for providing such ultrasound image with vessel information and a corresponding computer program.
Abstract:
The present disclosure describes ultrasound imaging systems and methods that may be used to image breast tissue. An ultrasound imaging system according to one embodiment may include a user interface comprising a display, a processor operatively connected to the user interface, and memory comprising processor-executable instructions, which when executed by the processor cause the user interface to display a first ultrasound image of a breast on the display and receive an indication of a first region of interest (ROI) in the first ultrasound image. The memory may include instructions to further cause the user interface to display a second ultrasound image of the breast on the display and receive an indication of a second region of interest in the second ultrasound image. The processor may be configured to determine locations of the first and second regions of interest based on probe position data associated with the first and second images, respectively and cause the user interface to display a visual indication of a relative distance between the first and second regions of interest if the relative distance is less than or equal to a predetermined amount.
Abstract:
The present invention relates to an ultrasound imaging system comprising an ultrasound probe having a transducer array configured to provide an ultrasound receive signal. The system further comprises a B-mode volume processing unit configured to generate a B-mode volume based on the ultrasound receive signal, and a B-mode image processing unit configured to provide a current B-mode image based on the B-mode volume. The system further comprises a memory configured to store a previously acquired 3D-vessel map. Also, the system comprises a registration unit configured to register the previously acquired 3D-vessel map to the B-mode volume and to select a portion of the 3D-vessel map corresponding to the current B-mode image. Further, the system comprises a display configured to display an ultrasound image based on the current B-mode image and the selected portion of the 3D-vessel map. The present invention further relates to a method for providing such ultrasound image with vessel information and a corresponding computer program.
Abstract:
The present invention relates to an ultrasound imaging system (10) comprising an ultrasound probe (20) having a transducer array (21) configured to provide an ultrasound receive signal. The system further comprises a B-mode volume processing unit (30) configured to generate a B-mode volume (31) based on the ultrasound receive signal, and a B-mode image processing unit (40) configured to provide a current B-mode image (41) based on the B-mode volume (31). The system further comprises a memory (50) configured to store a previously acquired 3D-vessel map (51). Also, the system comprises a registration unit (60) configured to register the previously acquired 3D-vessel map (51) to the B-mode volume (31) and to select a portion (61) of the 3D-vessel map corresponding to the current B-mode image (41). Further, the system comprises a display configured to display an ultrasound image (71) based on the current B-mode image (41) and the selected portion (61) of the 3D-vessel map (51). The present invention further relates to a method for providing such ultrasound image with vessel information and a corresponding computer program.
Abstract:
A method for planning ablation treatment using ultrasound data begins by identify pathology to be treated and one or more blood vessels proximate the treatment site in a medical diagnostic image. Ultrasonic Doppler velocity data is acquired from the flow within the vessels and the Doppler data is used to calculate the volume blood flow through the vessels. The thermal effect of the heat transported by this blood flow is considered in the planning of the ablation treatment.
Abstract:
An ultrasound system and method are described for acquiring standard views of the fetal heart simultaneously with real-time imaging. A matrix array probe is manipulated until a first standard view such as a 4-chamber view is acquired. The first standard view image is matched to its corresponding plane in a fetal heart model. From the matched plane of the heart model, the orientations of the other standard views are known from the geometrical relationships of structures within the heart model. This orientation information is used to control the matrix array probe to automatically scan the planes of all of the standard views simultaneously in real-time.
Abstract:
The present invention relates to an ultrasound imaging system (10) comprising an ultrasound probe (20) having a transducer array (21) configured to provide an ultrasound receive signal. The system further comprises a B-mode volume processing unit (30) configured to generate a B-mode volume (31) based on the ultrasound receive signal, and a B-mode image processing unit (40) configured to provide a current B-mode image (41) based on the B-mode volume (31). The system further comprises a memory (50) configured to store a previously acquired 3D-vessel map (51). Also, the system comprises a registration unit (60) configured to register the previously acquired 3D-vessel map (51) to the B-mode volume (31) and to select a portion (61) of the 3D-vessel map corresponding to the current B-mode image (41). Further, the system comprises a display configured to display an ultrasound image (71) based on the current B-mode image (41) and the selected portion (61) of the 3D-vessel map (51). The present invention further relates to a method for providing such ultrasound image with vessel information and a corresponding computer program.
Abstract:
An ultrasound imaging system for needle insertion guidance uses a curved array transducer to scan an image field with unsteered beams as a needle is inserted into the image field. Due to differences in the angle of incidence between the radially directed beams and the needle, echoes will return most strongly from only a section of the needle. This section is identified in an image, and the angle of incidence producing the strongest returns is identified. Beams with this optimal angle of incidence are then steered in parallel from the curved array transducer to produce the best needle image. The steep steering angles of some of the steered beams can give rise to side lobe clutter artifacts, which can be identified and removed from the image data using dual apodization processing of the image data.