Abstract:
Methods and systems for accurately locating buried defects previously detected by an inspection system are described herein. A physical mark is made on the surface of a wafer near a buried defect detected by an inspection system. In addition, the inspection system accurately measures the distance between the detected defect and the physical mark in at least two dimensions. The wafer, an indication of the nominal location of the mark, and an indication of the distance between the detected defect and the mark are transferred to a material removal tool. The material removal tool (e.g., a focused ion beam (FIB) machining tool) removes material from the surface of the wafer above the buried defect until the buried defect is made visible to an electron-beam based measurement system. The electron-beam based measurement system is subsequently employed to further analyze the defect.
Abstract:
Methods and systems for determining a configuration for an optical element positioned in a collection aperture during wafer inspection are provided. One system includes a detector configured to detect light from a wafer that passes through an optical element, which includes a set of collection apertures, when the optical element has different configurations thereby generating different images for the different configurations. The system also includes a computer subsystem configured for constructing additional image(s) from two or more of the different images, and the two or more different images used to generate any one of the additional image(s) do not include only different images generated for single collection apertures in the set. The computer subsystem is further configured for selecting one of the different or additional configurations for the optical element based on the different images and the additional image(s).
Abstract:
Methods and systems for accurately locating buried defects previously detected by an inspection system are described herein. A physical mark is made on the surface of a wafer near a buried defect detected by an inspection system. In addition, the inspection system accurately measures the distance between the detected defect and the physical mark in at least two dimensions. The wafer, an indication of the nominal location of the mark, and an indication of the distance between the detected defect and the mark are transferred to a material removal tool. The material removal tool (e.g., a focused ion beam (FIB) machining tool) removes material from the surface of the wafer above the buried defect until the buried defect is made visible to an electron-beam based measurement system. The electron-beam based measurement system is subsequently employed to further analyze the defect.
Abstract:
Methods and systems for determining a configuration for an optical element positioned in a collection aperture during wafer inspection are provided. One system includes a detector configured to detect light from a wafer that passes through an optical element, which includes a set of collection apertures, when the optical element has different configurations thereby generating different images for the different configurations. The system also includes a computer subsystem configured for constructing additional image(s) from two or more of the different images, and the two or more different images used to generate any one of the additional image(s) do not include only different images generated for single collection apertures in the set. The computer subsystem is further configured for selecting one of the different or additional configurations for the optical element based on the different images and the additional image(s).
Abstract:
Methods and systems for determining a configuration for an optical element positioned in a collection aperture during wafer inspection are provided. One system includes a detector configured to detect light from a wafer that passes through an optical element, which includes a set of collection apertures, when the optical element has different configurations thereby generating different images for the different configurations. The system also includes a computer subsystem configured for constructing additional image(s) from two or more of the different images, and the two or more different images used to generate any one of the additional image(s) do not include only different images generated for single collection apertures in the set. The computer subsystem is further configured for selecting one of the different or additional configurations for the optical element based on the different images and the additional image(s).
Abstract:
Methods and systems for determining a configuration for an optical element positioned in a collection aperture during wafer inspection are provided. One system includes a detector configured to detect light from a wafer that passes through an optical element, which includes a set of collection apertures, when the optical element has different configurations thereby generating different images for the different configurations. The system also includes a computer subsystem configured for constructing additional image(s) from two or more of the different images, and the two or more different images used to generate any one of the additional image(s) do not include only different images generated for single collection apertures in the set. The computer subsystem is further configured for selecting one of the different or additional configurations for the optical element based on the different images and the additional image(s).