摘要:
A circuit and methods describing a complementary metal-oxide semiconductor (CMOS) rectifier for use in radio frequency (RF) energy harvesting with body biasing by the RF input to control the threshold voltage of each transistor. The CMOS rectifier includes an energy harvesting antenna, and multiple rectifier stages. The antenna receives electromagnetic radiation from the environment and generates a DC current. The oscillating input current is an RF+ positive current during a first half cycle and is an RF− negative current during a second half cycle. A first rectifier stage includes a first capacitor connected to the RF+ positive current, a second capacitor connected to the RF− negative current and a cross coupled CMOS circuit connected to the antenna.
摘要:
A circuit and methods describing a complementary metal-oxide semiconductor (CMOS) rectifier for use in radio frequency (RF) energy harvesting with body biasing by the RF input to control the threshold voltage of each transistor. The CMOS rectifier includes an energy harvesting antenna, and multiple rectifier stages. The antenna receives electromagnetic radiation from the environment and generates a DC current. The oscillating input current is an RF+ positive current during a first half cycle and is an RF− negative current during a second half cycle. A first rectifier stage includes a first capacitor connected to the RF+ positive current, a second capacitor connected to the RF− negative current and a cross coupled CMOS circuit connected to the antenna.
摘要:
The compact C-multiplier includes four MOSFETs operating in the subthreshold region using the translinear principle. The multiplier is controllable to meet designer requirements. A Tanner Tspice simulator is used to confirm the functionality of the design in 0.13 pm CMOS Technology. The circuit operates from a ±0.75 supply voltage. Simulation results indicate that the multiplication factor is large compared to existing designs.
摘要:
A circuit and methods describing a complementary metal-oxide semiconductor (CMOS) rectifier for use in radio frequency (RF) energy harvesting with body biasing by the RF input to control the threshold voltage of each transistor. The CMOS rectifier includes an energy harvesting antenna, and multiple rectifier stages. The antenna receives electromagnetic radiation from the environment and generates a DC current. The oscillating input current is an RF+ positive current during a first half cycle and is an RF− negative current during a second half cycle. A first rectifier stage includes a first capacitor connected to the RF+ positive current, a second capacitor connected to the RF− negative current and a cross coupled CMOS circuit connected to the antenna.
摘要:
The compact CMOS current-mode analog multifunction circuit is based on an implementation using MOSFETs operating in a sub-threshold region and forming two overlapping translinear loops capable of performing multiplication, division, controllable gain current amplifier, current mode differential amplifier, and differential-input single-output current amplifier.
摘要:
A CMOS logarithmic current generator includes current mode circuitry having a design principle based on a Taylor's series expansion that approximates an exponential function. A MOSFET circuit provides a function generator core cell having a biasing current Ib. The FETs of the circuit are matched and are biased in the weak inversion region. Additional transistors are used to convert a pair of input currents to a pair of voltages to provide an output current based upon a current mode logarithmic function. The biasing current Ib can be varied to provide a variable gain in the circuit.
摘要:
The high dynamic range exponential current generator produces an output waveform (current/voltage) which is an exponential function of the input waveform (current/voltage). The exponential characteristics are obtained in BiCMOS or Bipolar technologies using the intrinsic characteristics (IC/VBE) of the bipolar transistors. The high dynamic range exponential current generator is biased in weak inversion region. MOSFETs biased in weak inversion region are used not to utilize the inherent exponential (IDS/VGS) relationship but to simply implement x2 and x4 terms using translinear loops. The term x4 is realized by two cascaded squaring units. The approximation equation used is ⅇ x ≅ 0.025 + ( 1 + 0.125 x ) 4 0.025 + ( 1 - 0.125 x ) 4 .
摘要:
A CMOS current-mode folding amplifier circuit is provided that uses MOSFETs operating in relatively strong inversion. The CMOS current-mode folding amplifier circuit produces a saw-tooth shaped input-output characteristic which provides for relative precision in flash-type analog-to-digital converters. Furthermore, the CMOS current-mode folding amplifier circuit uses a plurality of simple current mirrors, in addition to biasing currents, for defining the switching levels. Accordingly, the current-mode amplifier requires less area on the chip and consumes less power relative to other analog preprocessing circuits. Moreover, the CMOS current-mode folding amplifier circuit is resilient to process, temperature and power supply variations. Tanner simulation tools using 0.35 μm CMOS technology confirm the functionality of the current-mode folding amplifier.
摘要:
The present disclosure relates to a compact temperature sensor displaying a temperature-resistance relationship. The temperature sensor comprises cross-coupled CMOS technology exhibits negative resistance, resulting in resistance-sensitive temperature sensing and amplification. The temperature sensor can be tuned to operate across a wide range of temperatures via modulation of a biasing current. The present disclosure further relates to subthreshold operation of CMOS technology.
摘要:
A current-mode analog computational circuit can be controlled to produce multiplying, squaring, divider and inverse functions and corresponding current outputs. The current-mode analog computational circuit is based on an implementation using MOSFETs operating in a sub-threshold region as can provide relatively ultra-low power dissipation. Furthermore, the current-mode analog computational circuit can be operated from a ±0.75 V DC supply. Tanner simulation results conducted using a 0.35-μm TSMC CMOS process confirmed the functionality of the multiplying, squaring, divider and inverse functions of the circuit. The current-mode analog computational circuit advantageously can have a total power consumption of 2.3 μW, a total harmonic distortion is 1.1%, a maximum linearity error of 0.3% and a bandwidth of 2.3 MHz.