摘要:
The present invention provides fully renewable engine fuels derived completely from biomass sources. In one embodiment the fully renewable engine fuel is comprised of one or more low carbon number esters, one or more pentosan-derivable furans, one or more aromatic hydrocarbon, one or more C4-C10 straight chain alkanes derivable from polysaccharides, and one or more bio-oils. In addition, the fuel may contain triethanolamine. Such a lower octane renewable fuel may be utilized, for example, in automobile fuel, 100 LL aviation fuel applications, and turbine engine applications. These ethanol-based, fully renewable fuels may be formulated to have a wide range of octane values and energy, and may effectively be used to replace 100 LL aviation fuel (known as AvGas), as well as high octane, rocket, diesel, and turbine engine fuels. In another embodiment, there is provided a synthetic high octane aviation fuel comprising isopentane and mesitylene, and process of producing same from a biomass.
摘要:
The present invention provides fully renewable engine fuels derived completely from biomass sources. The fully renewable engine fuel is comprised of one or more low carbon number esters, one or more pentosan-derivable furans, one or more aromatic hydrocarbon, one or more C4-C10 straight chain alkanes derivable from polysaccharides, and one or more bio-oils. In addition, the fuel may contain triethanolamine. Such a lower octane renewable fuel may be utilized, for example, in automobile fuel, 100 LL aviation fuel applications, and turbine engine applications. These ethanol-based, fully renewable fuels may be formulated to have a wide range of octane values and energy, and may effectively be used to replace 100LL aviation fuel (known as AvGas), as well as high octane, rocket, diesel, and turbine engine fuels.
摘要:
The present invention provides fully renewable turbine and diesel fuels derived completely from biomass sources. In one embodiment the fully renewable turbine fuel is comprised of mesitylene and at least one alkane. Preferably, the turbine fuel comprises from about 50 to 99 wt % mesitylene and from about 1 to 50 wt % of at least one alkane. In another embodiment the diesel fuel comprises mesitylene, octadecane, and optionally octane or nonane. Preferably, the diesel fuel comprises from about 50 to 99 wt % mesitylene, and from about 1 to 50 wt % octadecane. These biomass derived fuels may be formulated to have a wide range of cetane values and differing freezing and boiling points.
摘要:
The present invention provides fully renewable turbine and diesel fuels created from biomass sources. In one embodiment, the fully renewable turbine fuel is comprised of mesitylene and at least one alkane. Preferably, the turbine fuel comprises from about 50 to 99 wt % mesitylene and from about 1 to 50 wt % of at least one alkane. In another embodiment the diesel fuel comprises mesitylene, octadecane, and optionally octane or nonane. Preferably, the diesel fuel comprises from about 50 to 99 wt % mesitylene, and from about 1 to 50 wt % octadecane. These biomass derived fuels may be formulated to have a wide range of cetane values and differing freezing and boiling points. A preferred biogenic turbine fuel comprises one or more synthetic paraffinic kerosenes (SPK) and/or hydroprocessed renewable jet (HRJ) fuel; and between about 8 to 25 vol % of mesitylene. Another preferred biogenic turbine fuel is a blend of about 50% petroleum-based fuel; and about 50% of one or more of synthetic paraffinic kerosenes (SPK) and/or hydroprocessed renewable jet fuel (HRJ), and mesitylene.
摘要:
The present invention provides fully renewable turbine and diesel fuels derived completely from biomass sources. In one embodiment the fully renewable turbine fuel is comprised of mesitylene and at least one alkane. Preferably, the turbine fuel comprises from about 50 to 99 wt % mesitylene and from about 1 to 50 wt % of at least one alkane. In another embodiment the diesel fuel comprises mesitylene, octadecane, and optionally octane or nonane. Preferably, the diesel fuel comprises from about 50 to 99 wt % mesitylene, and from about 1 to 50 wt % octadecane. These biomass derived fuels may be formulated to have a wide range of cetane values and differing freezing and boiling points.
摘要:
The present invention provides non-petroleum high-octane fuel derived from biomass sources, and a method of producing same. The method of production involves reducing the biomass feedstocks to sugars, fermenting the sugars using microorganisms or mutagens thereof to produce ethanol or acetic acid, converting the acetic acid or ethanol to acetone, and converting the acetone to mesitylene and isopentane, the major components of the renewable engine fuel. Trimerization of acetone can be carried out in the presence of a catalyst containing at least one metal selected from the group consisting of niobium, iron and manganese. The ethanol can be converted to mesitylene in a dehydration reaction in the presence of a catalyst of zinc oxide/calcium oxide, and unreacted ethanol and water separated from mesitylene by distillation. These ethanol-based, biomass-derived fuels are fully renewable, may be formulated to have a wide range of octane values and energy, and may effectively be used to replace 100 LL aviation fuel (known as AvGas), as well as high-octane, rocket, diesel, turbine engine fuels, as well as two-cycle, spark-ignited engine fuels.
摘要:
A method for performing work comprising the steps of providing an impellant consisting essentially of hydrogen peroxide of a strength at least 85 mass percent of total impellant, decomposing the impellant, wherein the decomposition releases energy, and, directing the released energy to perform work. A power system having an impellant consisting essentially of hydrogen peroxide of a strength at least 85 mass percent of total impellant is disclosed. The work may provide environmental conditioning, such as heat and potable water.
摘要:
The non-toxic bipropellent of the present invention contains a non-toxic ergolic miscible fuel (NHMF) and a rocket grade hydrogen peroxide. This non-toxic hypergolic miscible fuel (NHMF) has rapid ignition capability. The non-toxic hypergolic miscible fuel (NHMF) contains 3 species. Namely, a polar organic species miscible with hydrogen peroxide, a propagator, which may be substituted or unsubstituted amines, amides or diamines, and an inorganic metal salt, which reacts to form a catalyst in solution or as a colloid. The inorganic metal salt is miscible with the polar organic species and the propagator in solution. The catalyst has a faster rate of reaction with said rocket grade hydrogen peroxide than the propagator, the propagator has a faster rate of reaction with the rocket grade hydrogen peroxide than the polar organic species, and the polar organic species, propagator and catalyst are mutually soluble.
摘要:
A motor fuel providing higher gas mileage comprising gasoline produced from petroleum and from about 1 to 30 wt % of mesitylene. This fuel can advantageously contain conventional additives used in gasoline. The use of mesitylene in gasoline blend yields a fuel blend with a higher research octane number and motor octane number. In addition, an improved jet fuel is provided, having from 1-10 wt % biomass-derived mesitylene added thereto, having improved carbon emission characteristics while maintaining required specifications. Further, an improved bio-fuel is provided, which may function as a replacement for conventional Jet A/JP-8 fuel and has lowered carbon emission specifications, the bio-fuel comprised of 75-90 wt % synthetic parafinnic kerosene (SPK) and 10-25 wt % mesitylene.
摘要:
A high-activity hydrogen peroxide decomposition catalyst comprising an impregnated and calcined substrate with a catalyst mixture. The catalyst mixture comprises a hydrogen peroxide catalytically active compound containing a transition metal cation mixed with an alkaline promoter. A process for forming a high-activity hydrogen peroxide decomposition catalyst and a product of high-activity hydrogen peroxide decomposition are disclosed.