摘要:
The invention relates to the structure of a field emitter device, to the method of fabricating a field emitter device and to the use of the field emitter device in the technical field of flat panel displays. The field emission device comprises an array (1) of widely-spaced tips (2) for emitting electrons and a perforated extracting electrode (3) facing the array of tips. An individual series resistor is formed by each of said tips itself. The widely-spaced tips are not surrounded by a layer of electrically insulating material. The tips are not surrounded by an insulating layer and the tip end is not surrounded by a gate or extraction electrode. This avoids failures like shorts between the cathode electrode and the gate or extraction electrode which could occur due to inaccurate coating or etching processes, and enhances the reliability and the life-time of the array of tips. To fabricate the field emission device, a micromechanically manufactured array (1) of widely-spaced tips (2) and a micromechanically manufactured perforated extracting electrode (3) are provided. The outer sides of the perforated extracting electrode are bonded to the array in a way that the perforated extracting electrode is facing the array. With the array of widely-spaced tips and the perforated extracting electrode being fabricated separately and bonded together subsequently, both the number of process steps required for each of the two parts and the manufacturing process costs are reduced.
摘要:
To fabricate a field emission device a micromechanically manufactured array (1) of widely-spaced tips (2) and a micromechanically manufactured perforated extracting electrode (3) are provided. The outer sides of the perforated extracting electrode are bonded to the array in a way that the perforated extracting electrode is facing the array. With the array of widely-spaced tips and the perforated extracting electrode being fabricated separately and bonded together subsequently, both the number of process steps required for each of the two parts and the manufacturing process costs are reduced.
摘要:
The supporting plate and the bulk removal, transport and storage fixture for small batch-fabricated devices (1) have openings (2) penetrating from the top side (3) to the bottom side (4) of the plate and raised retaining means (5) on the bottom side (4). The raised retaining means (5) are provided in sufficient number and are arranged according to the shape of the devices (1) for retaining the devices. Flange means (7) which are designed for providing vacuum or agents to the devices (1) on the supporting plate are connected to the supporting plate thus forming a fixture. By changing the arrangement of the raised retaining means (5) and/or the openings (2) the supporting plate and the fixture may easily be adapted to different sizes and kinds of devices.
摘要:
A structure of openings is produced in two or more layers of silylated, polyimide photoresist. Openings in subsequent layers, which overlap previous openings, are of larger size. Then the structure is transferred to an organic substrate using oxygen plasma etching with up to 3% CF.sub.4. The smallest opening transferred to the substrate extends through the substrate.
摘要:
Disclosed is a vacuum reactor for etching substrates having a low thermal conductivity to a high degree of etch rate uniformity, wherein the substrates to be etched are arranged in a holder at a predetermined spacing from the cathode to which RF energy is applied. According to a preferred embodiment of the invention, the cathode is raised in the area of the substrate to be etched to within a spacing of about 0.2 mm from the bottom side of the substrate. The cathode is made of aluminium, and is provided in the area of the substrate to be etched with a layer which acts as a black radiator. The heat formed during RIE is removed by radiation, and the radiation reflected from the cathode to the substrate is absorbed by the layer. Also disclosed is a method of etching substrates having a low thermal conductivity, in particular plastic substrates.
摘要:
An ion generator for the generation of a plasma is assembled from module subassemblies. The first subassembly includes a dielectric plate 1, on the first surface 1a of which are located a large number of first electrodes 3, and the second surface 1b of which is coated with a structured conductive layer 2. The second subassembly includes an aperatured spacer plate with a large number of dielectric spacers with a second electrode 5 on the side facing away from the dielectric plate 1. In joining the subassemblies together, the aperatured spacer plate is connected to the dielectric plate 1 at its first surface 1a in such a way that cavities 6 for accommodating plasma are formed by the first electrodes 3, parts of the first surface 1a of the dielectric plate 1 and the spacers 4 with the second electrodes 5. The first set of electrodes 3 shield the points where the subassemblies are bonded together from plasma in the cavities.
摘要:
A method is provided for producing deep substantially vertical structures in silicon substrates, wherein in a first step, the silicon substrate is anisotropically plasma etched to a first predetermined depth, thereby creating a first structure. Subsequently, the surface of the substrate is covered conformally with an etch-resistant coating, and the horizontal parts of said coating are selectively removed. Following this removal, the substrate is anisotropically plasma etched at low temperatures to a second predetermined depth with a mixture of SF.sub.6 /O.sub.2, whereby a second structure is created. Finally, the vertical parts of the coating are removed.
摘要:
A structure of openings is produced in two or more layers of silylated, polyimide photoresist. Openings in subsequent layers, which overlap previous openings, are of larger size. Then the structure is transferred to an organic substrate using oxygen plasma etching with up to 3% CF.sub.4. The smallest opening transferred to the substrate extends through the substrate.
摘要:
Disclosed is a vacuum reactor for etching substrates having a low thermal conductivity to a high degree of etch rate uniformity, wherein the substrates to be etched are arranged in a holder at a predetermined spacing from the cathode to which RF energy is applied. According to a preferred embodiment of the invention, the cathode is raised in the area of the substrate to be etched to within a spacing of about 0.2 mm from the bottom side of the substrate. The cathode is made of aluminium, and is provided in the area of the substrate to be etched with a layer which acts as a black radiator. The heat formed during RIE is removed by radiation, and the radiation reflected from the cathode to the substrate is absorbed by the layer. Also disclosed is a method of etching substrates having a low thermal conductivity, in particular plastic substrates.