摘要:
The process includes processing a molten phase of semiconductor material ering a solid phase of the material and having a free surface opposite this solid phase, into which, during the crystallization procedure, energy is radiated and material is fed in in granular form, which material floats and is melted. As a result, at the opposite solid/liquid interface, material grows on the solid phase which is drawn downwards in accordance with the growth rate. The process allows mono- or polycrystalline rods or blocks to be obtained. The main advantages of the process are that it can be carried out without melting vessels, it is possible to use granular material, and the energy balance is favorable because of the small amounts of melt.
摘要:
The invention provides a process for the manufacture of coarsely crystalline to monocrystalline sheets and/or plates of semiconductor material of preferred orientation. A meniscus of molten semiconductor material comes in contact with a moving, cooler substrate of the same coarsely crystalline to monocrystalline semiconductor material, during which, while transferring the preferred orientation, a thin sheet of the semiconductor material is pulled onto the substrate and, after cooling, becomes detached from the substrate. The substrate can be reused as often as desired.
摘要:
A process for the manufacture of shaped bodies from silicon granulates for producing silicon melts includes first incipiently melting silicon grains on their surfaces, so that they bond with their neighbors in the process and, after solidifying, form a porous compound shaped body which only then may be melted completely. Such compound shaped bodies can be manufactured continuously or semi-continuously and converted without difficulty by a subsequent step into the molten state. An apparatus for producing shaped bodies is also provided which preferably employs an electron beam, to supply energy to incipiently melt the granulate.
摘要:
The specification describes an energy-beam engraving method for producing depressions of different dimensions in a surface. In the method depressions with smaller and larger dimensions are produced by shorter and longer action of an energy beam with a substantially constant power. Besides the duration of action of the energy-beam on a predetermined range of the surface to be engraved simultaneously its focussing is so varied that the focus plane is closer to the surface in the case of smaller depressions than with larger depressions.