Abstract:
A phase change memory device that has a layered phase change layer composed of multiple phase change materials is presented. The device includes a semiconductor substrate, an interlayer dielectric layer, a high-temperature crystallization phase change, a low-temperature crystallization phase change layer, and an upper electrode. The interlayer dielectric layer formed on the semiconductor substrate and the high-temperature crystallization phase change layer is formed on the interlayer dielectric layer. The low-temperature crystallization phase change layer is formed over the high-temperature crystallization phase change layer. The upper electrode is formed over the low-temperature crystallization phase change layer. An optional diffusion barrier may be interposed between the two phase change layers.
Abstract:
A method of manufacturing a phase change memory device is provided. A first insulating layer having a plurality of metal word lines spaced apart at a constant distance is formed on a semiconductor substrate. A plurality of line structures having a barrier metal layer, a polysilicon layer and a hard mask layer are formed to be overlaid on the plurality of metal word lines. A second insulating layer is formed between the line structures. Cross patterns are formed by etching the hard mask layers and the polysilicon layers of the line structures using mask patterns crossed with the metal word lines. A third insulating layer is buried within spaces between the cross patterns. Self-aligned phase change contact holes are formed and at the same time, diode patterns formed of remnant polysilicon layers are formed by selectively removing the hard mask layers constituting the cross patterns.
Abstract:
A semiconductor device and a method of fabricating the same are provided. The semiconductor device includes a semiconductor substrate in which a word line region is formed, and a barrier metal layer arranged on the word line region and causing a Schottky junction. The barrier metal layer includes a first nitride material, in which a first material is nitrified, and a second nitride material, in which a second material is nitrified. The barrier metal layer is formed of a mixture of the first nitride material and the second nitride material. At least one of the first material or the second material is rich in a metal used to form the first nitride material or the second nitride material.