Abstract:
The present invention discloses methods of making a mixture of theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate and theaflavin 3,3′-digallate, pharmaceutical compositions of the above mixture of theaflavins, diet supplement compositions of the above mixture of theaflavins and methods for using the above mixtures of theaflavin and pharmaceutical compositions thereof to treat or prevent various diseases. The present invention also discloses methods of making theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate and theaflavin 3,3′-digallate, each as a separate compound, pharmaceutical compositions of the above compounds, diet supplement compositions of the above compounds and methods for using the above compounds to treat or prevent various diseases.
Abstract:
The present invention discloses methods of making a mixture of theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate and theaflavin 3,3′-digallate, pharmaceutical compositions of the above mixture of theaflavins, diet supplement compositions of the above mixture of theaflavins and methods for using the above mixtures of theaflavin and pharmaceutical compositions thereof to treat or prevent various diseases. The present invention also discloses methods of making theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate and theaflavin 3,3′-digallate, each as a separate compound, pharmaceutical compositions of the above compounds, diet supplement compositions of the above compounds and methods for using the above compounds to treat or prevent various diseases.
Abstract:
The present invention discloses methods of making a mixture of theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate and theaflavin 3,3′-digallate, pharmaceutical compositions of the above mixture of theaflavins, diet supplement compositions of the above mixture of theaflavins and methods for using the above mixtures of theaflavin and pharmaceutical compositions thereof to treat or prevent various diseases. The present invention also discloses methods of making theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate and theaflavin 3,3′-digallate, each as a separate compound, pharmaceutical compositions of the above compounds, diet supplement compositions of the above compounds and methods for using the above compounds to treat or prevent various diseases.
Abstract:
The present invention discloses methods of making a mixture of theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate and theaflavin 3,3′-digallate, pharmaceutical compositions of the above mixture of theaflavins, diet supplement compositions of the above mixture of theaflavins and methods for using the above mixtures of theaflavin and pharmaceutical compositions thereof to treat or prevent various diseases. The present invention also discloses methods of making theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate and theaflavin 3,3′-digallate, each as a separate compound, pharmaceutical compositions of the above compounds, diet supplement compositions of the above compounds and methods for using the above compounds to treat or prevent various diseases.
Abstract:
The present invention discloses methods of making a mixture of theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate and theaflavin 3,3′-digallate, pharmaceutical compositions of the above mixture of theaflavins, diet supplement compositions of the above mixture of theaflavins and methods for using the above mixtures of theaflavin and pharmaceutical compositions thereof to treat or prevent various diseases. The present invention also discloses methods of making theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate and theaflavin 3,3′-digallate, each as a separate compound, pharmaceutical compositions of the above compounds, diet supplement compositions of the above compounds and methods for using the above compounds to treat or prevent various diseases.
Abstract:
The present invention relates to a flexible direct-drive bogie and implements a flexible frame by using a flexible cross beam, so as to make it easy for left and right side-frames to nod relatively to adapt to a larger twist of a track. As the frame is flexible, a primary suspension of the present invention is simplified to a thin layer of rubber pad, so that the production cost is reduced. Flexible drive devices enable flexible suspension of a permanent magnetic motor, and at the same time, can transmit torque, improve transmission efficiency, and reduce a weight of a transmission mechanism.
Abstract:
A compact deformation-based micro-texturing apparatus and method employ flexure bearing houses for rotatably supporting opposite ends of each of a first (e.g. upper) roll and a second (e.g. lower) roll to provide a working roll gap between the rolls, wherein at least one of the rolls has one or more micro surface features to plastically deform a surface of a workpiece deformed by rolling action in the roll gap. An electrical current may be passed through the workpiece to assist micro deformation. A roll gap adjusting device is operably associated with the first and second flexure bearing houses for adjusting the roll gap dimension to the final depth of the micro surface features to be imparted to the surface of the workpiece by the rolling action.
Abstract:
A system for acquiring access to a web-based application includes one or more computer-readable storage media and an application (e.g., a web browser) for accessing and retrieving over a network a plurality of resources. The system also includes a program interface embodied on the one or more computer-readable storage media. The program interface is configured to present a common set of application program interfaces (APIs) that can be used by the application to demonstrate that a user of the application is entitled to access a first resource. The system also includes programming logic configured to determine if the user of the application is authorized to access the first resource. If it is determined that authorization has not been established to access the first resource, the application is directed to communicate with a marketplace to obtain authorization to access the first resource.
Abstract:
A bus centering device for use in an aircraft electrical power distribution system that includes a positive bus rail, a negative bus rail, and a ground is described. The device includes a central node, a first and second switching component configured to couple the central node to the positive rail and the negative rail for a first and second predetermined duty cycle, respectively. The device includes an inductive component coupled between the central node and ground, and is configured to maintain a voltage at the central node substantially equal to ground, wherein a voltage between the positive rail and the central node is maintained substantially equal to a voltage between the negative rail and the central node. The device includes a first and second current limiting device configured to maintain a continuity of current from the inductive component when the first and second switching components are turned off.
Abstract:
A method of operating a wind farm that includes a plurality of wind turbine generators (WTGs) includes generating wind turbine generator (WTG) availability data for each WTG. The method also includes generating wide-area meteorological data for a first geographical region. The method further includes generating narrow-area meteorological forecast data for a second geographical region by transmitting at least a portion of the wide-area meteorological data to at least one resident narrow-area meteorological forecast algorithm. The first geographical region includes at least a portion of the second geographical region. The method also includes generating electric power production forecast data by using at least one resident electric power production forecast algorithm to manipulate the WTG availability data and the narrow-area meteorological forecast data.