摘要:
A control device for controlling the operation of a fuel cell system is disclosed, including a microprocessor, a voltage detection circuit, a current detection circuit, a hydrogen pressure detection circuit, a temperature detection circuit, an air flow rate control circuit that is controlled in a pulse width modulation manner, and a pulse signal generation circuit. The air flow rate control circuit is controlled by the microprocessor for regulating the air flow rate through an air supply conduit in a pulse width modulation manner in accordance with output current of a fuel cell stack. The pulse signal generation circuit is controlled by the microprocessor to generate pulse signals for controlling hydrogen flow through a hydrogen supply conduit. The control device monitors the operation conditions of the fuel cell system and performs a preset control process to control the operation of the fuel cell stack so as to optimize the efficiency and overall performance of the fuel cell system.
摘要:
A fuel cell stack includes a number of modularized plate structures including an anode plate, a cathode plate, water coolant plates and air coolant plates. The anode and cathode plates are designed to form hydrogen and air channels that allow for uniform distribution and even flow of hydrogen and air through the channels with the channels of each particular plate having substantially identical length in order to enhance electrochemical reaction between hydrogen and oxygen contained in the air with respective catalysts in the fuel cell stack. Also a sufficient amount of air is allowed to flow through the cathode plate to enhance output power of the fuel cell stack. The coolant plates adapt a split design, which introduces turbulence in the coolant channels to enhance heat removal.
摘要:
An electric scooter includes a scooter frame having a rear cover inside which a fuel cell stack is mounted in an inclined manner and a center cover connected to the rear cover by a footstep section. A front cover is mounted to a front side of the scooter frame and forms an interior space with the center cover. A hydrogen canister holder is mounted in the interior space for retaining a number of hydrogen storage canisters in an inclined manner for supply of hydrogen to the fuel cell stack. The canisters are arranged in pair on opposite sides of a centerline of the scooter frame. A heat dissipation system including a coolant container, a heat exchanger, and a pump is further provided in the interior space to maintain the hydrogen storage canisters at a proper operation temperature.
摘要:
A rapid coupling device couples a hydrogen storage canister and a fuel cell. The rapid coupling device includes first and second coupling assemblies. The first coupling assembly includes a base, and a communicating member coupled to the fuel cell, and carrying a first ejector, a separating member embracing the base, a moving member reciprocating longitudinally inside the base, and elastic members therebetween. The base is provided with abutting members which, depending on the respective positions of the moving member and the separating member control interconnection between the first and second coupling assemblies. The second coupling assembly includes a body carrying a second ejector and lockable inside the base for connection of the first and second ejectors.
摘要:
Disclosed is a method for measuring the available remaining hydrogen capacity of a non-replaced hydrogen storage canister. After the original hydrogen capacity of the hydrogen storage canister is read, the used hydrogen capacity of the hydrogen storage canister is read and remaining hydrogen capacity formula is employed to determine the available remaining hydrogen capacity of the hydrogen storage canister. For a fully charged or newly-installed hydrogen storage canister, the process includes reading the number of cycles of operation of the hydrogen storage canister, reading the original hydrogen capacity of the hydrogen storage canister, reading the used hydrogen capacity of the hydrogen storage canister, and then employing the remaining hydrogen capacity formula to determine the available remaining hydrogen capacity of the hydrogen storage canister.
摘要:
Disclosed is a method for measuring the available remaining hydrogen capacity of a non-replaced hydrogen storage canister. After the original hydrogen capacity of the hydrogen storage canister is read, the used hydrogen capacity of the hydrogen storage canister is read and remaining hydrogen capacity formula is employed to determine the available remaining hydrogen capacity of the hydrogen storage canister. For a fully charged or newly-installed hydrogen storage canister, the process includes reading the number of cycles of operation of the hydrogen storage canister, reading the original hydrogen capacity of the hydrogen storage canister, reading the used hydrogen capacity of the hydrogen storage canister, and then employing the remaining hydrogen capacity formula to determine the available remaining hydrogen capacity of the hydrogen storage canister.
摘要:
A fuel cell system includes a fuel cell stack, an air supply system including a blower for driving the air to the fuel cell stack and an air humidifier for humidifying the air supplied to the fuel cell stack, a hydrogen supply system including a hydrogen storage and a pressure regulating device, and a hydrogen recirculator for receiving excessive hydrogen from the fuel cell stack and forcing the hydrogen back into the fuel cell stack in order to induce a hydrogen flow inside the fuel cell stack. A control circuit electrically controls the flow and pressure regulating device for regulating the hydrogen flow to the fuel cell stack and electrically controls the blower to regulate the air flows to the fuel cell stack and the air humidifier.
摘要:
A functional test and demonstration apparatus is provided for a fuel cell power system, which includes a mainframe for supporting a fuel cell stack. A hydrogen supply module supplies hydrogen to the fuel cell stack, and excessive hydrogen flows out from a hydrogen gas outlet of the fuel cell stack. Air is drawn in and supplied to the fuel cell stack by a blowing device, and flows out from an air outlet of the fuel cell stack. A liquid cooling device is connected between a coolant inlet and a coolant outlet of the fuel cell stack to remove heat from the fuel cell stack. A humidifier is used to properly humidify the air before it is conveyed to the fuel cell stack. The signals detected from various components of the fuel cell power system are sent to a control device which controls the operation of the components.
摘要:
A rapid coupling device for a hydrogen storage canister. The rapid coupling device communicates the hydrogen storage canister and a fuel cell. The hydrogen storage canister includes a connecting assembly. The rapid coupling device includes a base and a communicating member. The communicating member communicates with the fuel cell, and is connected to the base. When the hydrogen storage canister is coupled to the fuel cell via the connecting assembly, the communicating member is abutted by the connecting assembly so that hydrogen in the hydrogen storage canister flows to the fuel cell through the connecting assembly and the communicating member.
摘要:
Disclosed is a gas-inlet pressure adjustment structure for a flow field plate of a fuel cell stack. At least one gas inlet opening, at least one gas outlet opening, and a plurality of channels are defined in a central zone of the flow field plate. A membrane electrode assembly is stacked over the central zone. The channels are of a parallel arrangement and each having a reduced open end and an expanded open end, the reduced open end having a cross-sectional area smaller than that of the expanded open end. The reduced open end communicates the gas inlet opening through which a reaction gas is supplied to the flow field plate. Water generated by chemical reaction occurring inside the flow field plate and attached to a surface of the gas channel by surface tension is expelled out of the channel by a force caused by a pressure difference induced in the reaction gas, which is supplied through the gas inlet opening and flows in sequence through the reduced open end, the channel, and the expanded open end and eventually discharges through the gas outlet opening.