Abstract:
A method of colouring porous material, especially human hair, is described, which method comprises applying to the material being coloured, in any desired order successively, or simultaneously, a) at least one capped diazonium compound of Formula (1) and/or at least one compound of Formula (2) and/or at least one compound of Formula (3) wherein Q is an unsubstituted or substituted aromatic or heterocyclic residue, R is the radical of an unsubstituted or substituted, water-soluble aliphatic or aromatic amine, and T is an unsubstituted or substituted, water-soluble aliphatic or aromatic residue, wherein at least one of the groups must contain a radical imparting water solubility, and a) at least one water-soluble coupling component under conditions such that, initially, coupling does not take place, and then causing the capped diazonium compound present on the material to react with the coupling component.
Abstract:
A method of coloring porous material, especially human hair, is described, which method comprises applying to the material being colored, in any desired order successively, or simultaneously, a) a capped diazonium compound and b) a water-soluble coupling component under conditions such that, initially, coupling does not take place, and then causing the capped diazonium compound present on the material to react with the coupling component.
Abstract:
The present invention relates to a method of colouring keratin-containing fibres comprising applying at least one diazonium compound of formula Ia or Ib, wherein R1 to R5 are each independently of the others C1-C12alkyl, C5-C14aryl, C5-C8cycloalkyl, C6-C20aralkyl, C1-C12alkoxy or C1-C12alkylthio unsubstituted or substituted by one or more halogen atoms, nitro, cyano or alkoxy groups; or hydrogen, halogen, hydroxy, nitro, COOH, SO3H, CN, SCN, C1-C4alkylsulfonyl, phenylsulfonyl, benzylsulfonyl, di-C1-C4alkylaminosulfonyl, C1-C4alkylcarbonylamino, C1-C4alkoxysulfonyl or dihydroxy-C1-C4alkylaminosulfonyl and X− is o−, COO− or SO3−, and at least one coupling component, preferably a a water-soluble to the material to be coloured and causing them to react at a pH in the range of 8 to 12.
Abstract:
The present invention relates to compositions comprising at least one oxonol dye and at least one metal complex of formula (I-1) or (I-2), to recording media comprising the compositions and to use of the compositions in the production of optical recording media, colour filters and printing inks, wherein the substituents are as defined in the description. Use of the metal complexes of formula (I) results, surprisingly, in a comparatively weak tendency of the oxonol dyes to aggregate in the solid state so that the absorption curve remains advantageously narrow even in the solid state, as a result of which recording media having high reflectivity as well as high sensitivity and good playback characteristics in the desired spectral range are made available.
Abstract:
A method of colouring porous material, especially human hair, is described, which method comprises applying to the material being coloured, in any desired order successively, or simultaneously, a) at least one capped diazonium compound of Formula (1) and/or at least one compound of Formula (2) and/or at least one compound of Formula (3) wherein Q is an unsubstituted or substituted aromatic or heterocyclic residue, R is the radical of an unsubstituted or substituted, water-soluble aliphatic or aromatic amine, and T is an unsubstituted or substituted, water-soluble aliphatic or aromatic residue, wherein at least one of the groups must contain a radical imparting water solubility, and a) at least one water-soluble coupling component under conditions such that, initially, coupling does not take place, and then causing the capped diazonium compound present on the material to react with the coupling component
Abstract:
The present invention relates to a method of coloring keratin-containing fibres, especially human hair, in which method a compound of formula (I), wherein R is hydroxy or NHR1, R1 being hydrogen or C1–C4alkyl, and B is an aromatic or heterocyclic ring, is diazotised, and the resulting diazonium salt is applied at a pH of from 2 to 5 to the material being colored and then, by means of increasing the pH to from 7 to 12, is fixed on the material in the form of an oligomeric or polymeric colorant
Abstract:
The present invention relates to a process for the preparation of a mixture comprising at least two structurally different diketopyrrolopyrrole pigments of formula wherein A1 and A2 are each independently of the other an aromatic or heteroaromatic radical, by reacting a succinic acid ester with at least one unsubstituted or substituted aromatic or heteroaromatic nitrile, which process comprises carrying out the reaction in the presence of at least one compound of formula wherein A is an aromatic or heteroaromatic radical, R3 is hydrogen, halogen, methyl, methoxy, —CF3 or —CN, R4 is a linear or, from C3 upwards, optionally branched C1-C30alkyl, C6-C10aryl or C6-C24aralkyl radical, X is —S—, —O—, —CR5R5′—, —COO—, —CONR5—, —SO—, SO2—, —SO2NR5— or —NR5— and R5 and R5′ are each independently of the other hydrogen or a linear or, from C3 upwards, optionally branched C1-C30alkyl, C6-C10aryl or C6-C24aralkyl radical, to the use of such a mixture in the coloring of organic material and in cosmetics, and also to novel diketopyrrolopyrrole pigment mixtures.
Abstract:
The present invention relates to a process for the preparation of a mixture comprising at least two structurally different diketopyrrolopyrrole pigments of formula wherein A1 and A2 are each independently of the other an aromatic or heteroaromatic radical, by reacting a succinic acid ester with at least one unsubstituted or substituted aromatic or heteroaromatic nitrile, which process comprises carrying out the reaction in the presence of at least one compound of formula wherein A is an aromatic or heteroaromatic radical, R3 is hydrogen, halogen, methyl, methoxy, —CF3 or —CN, R4 is a linear or, from C3 upwards, optionally branched C1-C30alkyl, C6-C10aryl or C6-C24aralkyl radical, X is —S—, —O—, —CR5R5′—, —COO—, —CONR5—, —SO—, SO2—, —SO2NR5— or —NR5— and R5 and R5′ are each independently of the other hydrogen or a linear or, from C3 upwards, optionally branched C1-C30alkyl, C6-C10aryl or C6-C24aralkyl radical, to the use of such a mixture in the colouring of organic material and in cosmetics, and also to novel diketopyrrolopyrrole pigment mixtures.
Abstract:
The present invention relates to a process for the preparation of a mixture comprising at least two structurally different diketopyrrolopyrrole pigments of formula (1) wherein A1 and A2 are each independently of the other an aromatic or heteroaromatic radical, by reacting a succinic acid ester with at least one unsubstituted or substituted aromatic or heteroaromatic nitrile, which process comprises carrying out the reaction in the presence of at least one compound of formula (2) wherein A is an aromatic or heteroaromatic radical, R3 is hydrogen, halogen, methyl, methoxy, —CF3 or —CN, R4 is a linear or, from C3 upwards, optionally branched C1-C30alkyl, C6-C10aryl or C6-C24aralkyl radical, X is —S—, —O—, —CR5R5′—, —COO—, —CONR5—, —SO—, SO2—, —SO2NR5— or —NR5— and R5 and R5′ are each independently of the other hydrogen or a linear or, from C3 upwards, optionally branched C1-C30alkyl, C6-C10aryl or C6-C24aralkyl radical, to the use of such a mixture in the coloring of organic material and in cosmetics, and also to novel diketopyrrolopyrrole pigment mixtures
Abstract:
The present invention relates to a process for the preparation of a mixture comprising at least two structurally different diketopyrrolopyrrole pigments of formula (1) wherein A1 and A2 are each independently of the other an aromatic or heteroaromatic radical, by reacting a succinic acid ester with at least one unsubstituted or substituted aromatic or heteroaromatic nitrile, which process comprises carrying out the reaction in the presence of at least one compound of formula (2) wherein A is an aromatic or heteroaromatic radical, R3 is hydrogen, halogen, methyl, methoxy, —CF3 or —CN, R4 is a linear or, from C3 upwards, optionally branched C1-C30alkyl, C6-C10aryl or C6-C24aralkyl radical, X is —S—, -0-, —CR5R5′—, —COO—, —CONR5—, —SO—, SO2—, —SO2NR5— or —NR5— and R5 and R5′ are each independently of the other hydrogen or a linear or, from C3 upwards, optionally branched C1-C30alkyl, C6-C10aryl or C6-C24aralkyl radical, to the use of such a mixture in the colouring of organic material and in cosmetics, and also to novel diketopyrrolopyrrole pigment mixtures.