摘要:
An integrated circuit chip is made using Genie, a described computer chip design tool which can analyze the data contained within an entire endpoint report, compute relationships between paths based on shared segments, and display this information graphically to the designer. Specifically, Genie groups failing paths into Timing Islands. A timing island is a group of paths which contain at least one shared segment. The most frequently shared segment is sifted to the top of the priority list for each island, and is labeled as the Hub. Thinking of timing islands as a tree, the hub of the island would be the trunk. If you chop the tree down by the trunk, all of the branches, limbs and twigs will fall down too. This is analogous to fixing the timing failures in the hub, and the fix trickling out to each of the segments that dangle off the hub.
摘要:
Genie is a described computer chip design tool which can analyze the data contained within an entire endpoint report, compute relationships between paths based on shared segments, and display this information graphically to the designer. Specifically, Genie groups failing paths into Timing Islands. A timing island is a group of paths which contain at least one shared segment. The most frequently shared segment is sifted to the top of the priority list for each island, and is labeled as the Hub. Thinking of timing islands as a tree, the hub of the island would be the trunk. If you chop the tree down by the trunk, all of the branches, limbs and twigs will fall down too. This is analogous to fixing the timing failures in the hub, and the fix trickling out to each of the segments that dangle off the hub.
摘要:
A method for eliminating negative slack in a netlist representing a chip design uses a contrived timing environment to overlay information onto the design environment during logic and physical synthesis phase. The overlaid timing information determines which netlist transformation provides a maximum leverage for the negative slack elimination and a way for creating a dynamic transformation recipe tuned for each design. The method further provides upper bounds on the negative slack elimination to prevent the netlist transforms from being applied to situations exceeding the capabilities for improving the design.
摘要:
A method for determining placement of circuitry during integrated circuit design is presented. The method includes accessing a net list identifying circuitry connections. A plurality of individual net weights are assigned to nets in timing paths within the net list. A composite net weight is determined for said timing paths, the composite net weight being in response to the plurality of individual net weights. Concurrently therewith it is advantageous to utilize our new method of improvements of concurrently proceeding to improve wireability of said design by additional timing optimization and net weight mapping modification steps.
摘要:
A method for determining placement of circuitry during integrated circuit design is presented. The method includes accessing a net list identifying circuitry connections. A plurality of individual net weights are assigned to nets in timing paths within the net list. A composite net weight is determined for said timing paths, the composite net weight being in response to the plurality of individual net weights. Concurrently therewith it is advantageous to utilize our new method of improvements of concurrently proceeding to improve wireability of said design by additional timing optimization and net weight mapping modification steps.
摘要:
A method for eliminating negative slack in a netlist representing a chip design uses a contrived timing environment to overlay information onto the design environment during logic and physical synthesis phase. The overlaid timing information determines which netlist transformation provides a maximum leverage for the negative slack elimination and a way for creating a dynamic transformation recipe tuned for each design. The method further provides upper bounds on the negative slack elimination to prevent the netlist transforms from being applied to situations exceeding the capabilities for improving the design.
摘要:
A method for determining placement of circuitry during integrated circuit design is presented. The method includes accessing a net list identifying circuitry connections. A plurality of individual net weights are assigned to nets in timing paths within the net list. A composite net weight is determined for said timing paths, the composite net weight being in response to the plurality of individual net weights. Concurrently therewith it is advantageous to utilize our new method of improvements of concurrently proceeding to improve wireability of said design by additional timing optimization and net weight mapping modification steps.
摘要:
Using a computer and storage, a circuit design process is executed to preserve overall design quality while obtaining quality placements for a full class of pipeline structure signatures. These signatures include classic latch to latch pipelines, as well as a variety of latch to latch and mixed logic pipelines. The process employs a method for optimizing pipeline structure placement in a circuit design, by initiating an analysis of pipeline logic structures for correcting poor quality of result (QOR) placements by identifying poor placements caused by placement algorithmic response to degenerate cases and in the process of analysis preserving high quality placements of global placement and timing to preserve preponderant non-degenerate cases in said circuit design. Then employing a plurality of global placement steps, wherein each subsequent placement's quality of result (QOR) is dependent upon the prior placement's quality of result (QOR), circuits are identified as being involved in a class of degenerate cases, and circuits having poor placements are removed by unplacing them from the global placement solution and also other non-degenerate poor quality placements are corrected.
摘要:
Using a computer and storage, a circuit design process is executed to preserve overall design quality while obtaining quality placements for a full class of pipeline structure signatures. These signatures include classic latch to latch pipelines, as well as a variety of latch to latch and mixed logic pipelines. The process employs a method for optimizing pipeline structure placement in a circuit design, by initiating an analysis of pipeline logic structures for correcting poor quality of result (QOR) placements by identifying poor placements caused by placement algorithmic response to degenerate cases and in the process of analysis preserving high quality placements of global placement and timing to preserve preponderant non-degenerate cases in said circuit design. Then employing a plurality of global placement steps, wherein each subsequent placement's quality of result (QOR) is dependent upon the prior placement's quality of result (QOR), circuits are identified as being involved in a class of degenerate cases, and circuits having poor placements are removed by unplacing them from the global placement solution and also other non-degenerate poor quality placements are corrected.
摘要:
Using a computer and storage, a circuit design process is executed to preserve overall design quality while obtaining quality placements for a full class of pipeline structure signatures. These signatures include classic latch to latch pipelines, as well as a variety of latch to latch and mixed logic pipelines. The process employs a method for optimizing pipeline structure placement in a circuit design, by initiating an analysis of pipeline logic structures for correcting poor quality of result (QOR) placements by identifying poor placements caused by placement algorithmic response to degenerate cases and in the process of analysis preserving high quality placements of global placement and timing to preserve preponderant non-degenerate cases in said circuit design. Then employing a plurality of global placement steps, wherein each subsequent placement's quality of result (QOR) is dependent upon the prior placement's quality of result (QOR), circuits are identified as being involved in a class of degenerate cases, and circuits having poor placements are removed by unplacing them from the global placement solution and also other non-degenerate poor quality placements are corrected.