Abstract:
A method of fabricating a MEMS composite transducer includes providing a substrate having a first surface and a second surface opposite the first surface. A transducing material is deposited over the first surface of the substrate. The transducing material is patterned by retaining transducing material in a first region and removing transducing material in a second region. A polymer layer is deposited over the first region and the second region. The polymer layer is patterned by retaining polymer in a third region and removing polymer in a fourth region. A first portion of the third region is coincident with a portion of the first region and a second portion of the third region is coincident with a portion of the second region. A cavity is etched from the second surface to the first surface of the substrate. An outer boundary of the cavity at the first surface of the substrate intersects the first region where transducing material is retained, so that a first portion of the transducing material is anchored to the first surface of the substrate and a second portion of the transducing material extends over at least a portion of the cavity.
Abstract:
A method of fabricating a MEMS composite transducer includes providing a substrate having a first surface and a second surface opposite the first surface. A transducing material is deposited over the first surface of the substrate. The transducing material is patterned by retaining transducing material in a first region and removing transducing material in a second region. A polymer layer is deposited over the first region and the second region. The polymer layer is patterned by retaining polymer in a third region and removing polymer in a fourth region. A first portion of the third region is coincident with a portion of the first region and a second portion of the third region is coincident with a portion of the second region. A cavity is etched from the second surface to the first surface of the substrate. An outer boundary of the cavity at the first surface of the substrate intersects the first region where transducing material is retained, so that a first portion of the transducing material is anchored to the first surface of the substrate and a second portion of the transducing material extends over at least a portion of the cavity.
Abstract:
A microfluidic device includes a substrate; at least one inorganic layer provided on the substrate; a patterned epoxy layer formed over the at least one inorganic layer, the patterned epoxy layer including a wall that defines a location for a fluid in the microfluidic device; and an alkoxysilane material containing a primary or secondary amine for promoting adhesion between the at least one inorganic layer and the patterned epoxy layer.
Abstract:
Operating an ultrasonic transmitter and receiver includes providing a MEMS composite transducer. The MEMS composite transducer includes a substrate. Portions of the substrate define an outer boundary of a cavity. A first MEMS transducing member includes a first size. A first portion of the first MEMS transducing member is anchored to the substrate. A second portion of the first MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. A second MEMS transducing member includes a second size smaller than the first size of the first MEMS transducing member. A first portion of the second MEMS transducing member is anchored to the substrate. A second portion of the second MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. A compliant membrane is positioned in contact with the first and second MEMS transducing members. A first portion of the compliant membrane covers the first and second MEMS transducing members. A second portion of the compliant membrane is anchored to the substrate. Electrical pulses are sent to the first MEMS transducing member which causes the first MEMS transducing member and the compliant membrane to vibrate. The vibrations of the first MEMS transducing member and the compliant membrane are transmitted to an object. Echo signals are received from the object. The received echo signals are converted into electrical signals by the second MEMS transducing member.
Abstract:
A MEMS composite transducer includes a substrate, a MEMS transducer, and a compliant membrane. Portions of the substrate define an outer boundary of a cavity. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. The compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member and a second portion of the compliant membrane is anchored to the substrate.
Abstract:
A MEMS composite transducer includes a substrate, a MEMS transducer, and a compliant membrane. Portions of the substrate define an outer boundary of a cavity. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. The compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member and a second portion of the compliant membrane is anchored to the substrate.
Abstract:
A method for forming a transducer, the method includes the steps of providing a substrate; providing a dielectric on the substrate; providing a first piezoelectric layer of the dielectric; providing a metal layer on the first piezoelectric layer; etching the metal layer to form a predetermined pattern having at least two electrodes; providing a second piezoelectric layer on the first piezoelectric layer and the etched metal layer; and etching a portion of the substrate surrounding the transducer to permit the transducer to move in a bender configuration.
Abstract:
An improved SLM that is capable of detecting when light incident on the SLM exceeds a predetermined threshold. A diode is fabricated around, or within the pixel array. Light incident on the array (and the diode) results in a current increase through the diode, which may detected and used to initiate a disable signal to control circuitry of the SLM.
Abstract:
A method of providing a reticle layout for a die having at least three patterns, namely a right pattern, a center pattern, and a left pattern, where the center pattern is oversized relative to the photolithography step size. To avoid the non-uniformity effects resulting from stitching the center pattern, the center pattern size is minimized. This is accomplished by moving portions of the center pattern to the left and right patterns.
Abstract:
An improved DMD type spatial light modulator having an array of pixels (18). The pixels (18) are of the “hidden hinge” design, each pixel having a mirror (30) supported over a hinged yoke (32). Addressing electrodes (26, 28) on an underlying metallization layer and addressing electrodes (50, 52) at the yoke level provide electrostatic forces that cause the mirrors to tilt and then to return to their flat state. The pixels (18) are designed to provide increased clearance between the leading edge of the yoke (32) and the underlying metallization layer when the mirrors (30) are tilted. Various features of the improved pixel (18) also improve the contrast ratio of images generated by the DMD.