Abstract:
Fluid flow is determined for a large flow pipe based upon differential pressure across an orifice in the pipe having a known cross-sectional area. In one form, the orifice is variable and adjusted in response to differential pressure so as to maintain differential pressure at a constant value. Flow is determined directly from orifice area. The orifice may be a part of a closed loop flow measurement system which responds to differential pressure changes to adjust orifice area. Various differential pressure settings may be used to accommodate selected back pressures in the flow pipe.
Abstract:
A method of substantially preventing contaminants from entering a condenser adapted for use within a steam generating system. A condenser is provided. Steam or a combination of water and steam is passed into the condenser, the condenser operating in a normal mode if a pressure in a control area is equal to or greater than a predefined pressure and operating in a non-normal mode if the pressure in the control area is less than the predefined pressure. An inert gas is injected into the condenser if a pressure in the control area is less than a holding pressure, the holding pressure being equal to or greater than the predefined pressure.
Abstract:
A power generation system (11) and method of operating such a system (11) including a steam turbine (14). In one embodiment a HRSG (20) includes an evaporator (127) coupled to receive condensate from the steam turbine (14), and a superheater (132) coupled to receive output from the evaporator (127). The HRSG (20) generates steam with thermal energy received from a combustion turbine (28). A flash tank (9) receives water heated in the HRSG (20), outputs a first portion of the water as steam, and outputs a second portion of the water as liquid. A flow line (134) passes steam (51) from the flash tank (9) to a combustion chamber (26) in the combustion turbine (28) to provide power augmentation.
Abstract:
A combustion turbine power plant (10) incorporating a desiccating scrubber (140) for simultaneously removing water and sulfur from a flue gas (20) of the power plant (10). The desiccating scrubber (140) may include an inlet nozzle (145) for spraying an aqueous solution (142) containing a desiccant and a base into flue gas (20) so the aqueous solution (142) makes direct contact with flue gas (20). A filter (162) may be provided to collect sulfur compounds downstream of the desiccating scrubber (140) and a regenerator (164) may be provided for recovering water. A controller (148) may control a base supply (170) and a desiccant supply (172) to regulate the respective amounts of each introduced into the aqueous solution (142). Controller (148) may be responsive to sensors (142) measuring the water and sulfur content of flue gas (20) exhausted to atmosphere (144). The desiccating scrubber (140) may include a demister (160) to entrain carryover droplets from a sprayed aqueous solution (142).
Abstract:
A system is disclosed including a data center computer for data collection and process control of a complex processing plant. The data center computer collects raw sensor data. The raw data is sent, by a conventional communicator routine, to a remote expert system for sensor diagnosis of faulty sensors. The diagnostic results, which include a calculation control value, are returned to the data center computer where the results are used to control sensor processing routines used to either control the plant based on the collected raw sensor data or to further process the sensor data. The further processed sensor data can then be used for high level system diagnoses.
Abstract:
A steam turbine preservative and method of preserving steam turbine components involves the application of an amine polymer as a non-aqueous layer to the surfaces of such components. An organic solvent is mixed with the amine polymer to adjust its application viscosity.
Abstract:
A diagnostic system wherein a central diagnostic center receives sensor data relative to the operating condition of a plurality of remote plants. Each plant records just certain sensor signals and transmits them at respective prescheduled transmisssion times. If certain activation limits are exceeded, a data link with the diagnostic center is immediately established so that the data may be transmitted ahead of its normally scheduled transmission time in order that an immediate diagnostic analysis be made on the plant. A communication link between the plant and diagnostic center is kept open for a predetermined period of time in which more data may be sent from the plant to the diagnostic center, and results and instructions, sent from the diagnostic center back to the plant. Such instructions may include the changing of certain parameters in the examination of the sensor signals.
Abstract:
A method of increasing service interval periods in a steam turbine by neutralizing sodium hydroxide in contaminated steam in a high temperature and a high pressure portion of a steam turbine by placing a protective covering over at least a portion of each of the bolts of a nozzle block assembly. The protective covering neutralizes contaminants in contaminated steam to reduce stress cracking of the bolts during steam turbine operation, and thus extend the useful life of the bolts and reduce the need for service work to repair or replace damaged bolts.
Abstract:
A combined cycle power generation system (10) includes a steam turbine (14, 16, 18), a combustion system (12) including a compressor (24), a combustion chamber (26), a gas turbine (28), and a HRSG (20) to generate steam with energy from the combustion turbine. A flow line (60, 70) passes superheated steam into the combustion chamber. In an associated method a first source of power is provided via a combustion process having a variable reaction temperature in a first turbine. A second source of power is provided via a second turbine. Components of the system are placed in a mode of increasing power output with steam generated from the HRSG, during which a portion of the steam is provided into a combustion chamber associated with operation of the second turbine.
Abstract:
A power generating system comprises a condenser and a deaerator apparatus. The condenser condenses a working fluid into a condensate and operates at an internal pressure above ambient pressure during a normal operating mode. The deaerator apparatus uses steam to remove contaminants from the condensate to bring the condensate to a desirable purity. The deaerator apparatus is deactivated during a typical operating state of the power generating system such that the condensate bypasses the deaerator apparatus. The deaerator apparatus is activated during a non-typical operating state of the power generating system such that the condensate passes into the deaerator apparatus wherein contaminants can be removed from the condensate. The typical operating state of the power generating system occurs when the condensate comprises a desirable purity and the non-typical operating state of the power generating system occurs when the condensate comprises an undesirable purity.