Abstract:
A radiation-sensitive resin composition includes a first polymer including an acid-labile group, an acid generator to generate an acid upon exposure to radiation, and a second polymer including a fluorine atom and a functional group shown by a general formula (x). The second polymer has a fluorine atom content higher than a fluorine atom content of the first polymer. R1 represents an alkali-labile group. A represents an oxygen atom, —NR′—, —CO—O—# or —SO2—O—##, wherein the oxygen atom represented by A is not an oxygen atom bonded directly to an aromatic ring, a carbonyl group, or a sulfoxyl group, R′ represents a hydrogen atom or an alkali-labile group, and “#” and “##” each indicate a bonding hand bonded to R1. -A-R1 (x)
Abstract:
A resist pattern-forming method includes providing a resist film having a surface free energy of 30 to 40 mN/m on a substrate using a radiation-sensitive resin composition. The resist film is exposed by applying radiation via a mask. The exposed resist film is developed. It is preferable that the exposing of the resist film includes exposing the resist film via an immersion liquid that is provided over the resist film
Abstract:
A composition for pattern formation includes a first polymer, a second polymer and a solvent. The first polymer includes: a first block including a first structural unit derived from a substituted or unsubstituted styrene; and a second block including a second structural unit other than the first structural unit. The second polymer includes: the first structural unit; and a group bonding to at least one end of a main chain thereof and including a polar group. The polar group is preferably a hydroxy group or a carboxyl group. A number average molecular weight of the second polymer is preferably no greater than 6,000. A mass ratio of the second polymer to the first polymer is preferably no less than 0.15 and no greater than 0.4. The solvent preferably comprises a compound comprising a hydroxyl group and an alkyl ester group.
Abstract:
A method for selectively modifying a base material surface, includes applying a composition on a surface of a base material to form a coating film. The coating film is heated. The base material includes a surface layer which includes a first region including a metal. The composition includes a first polymer and a solvent. The first polymer includes at an end of a main chain or a side chain thereof, a group including a first functional group capable of forming a bond with the metal. It is preferred that the base material further includes a second region comprising substantially only a non-metal, and the method further includes, after the heating, removing with a rinse agent a portion formed on the second region, of the coating film. The metal is preferably a constituent of a metal substance, an alloy, an oxide, an electrically conductive nitride or a silicide.
Abstract:
A pattern-forming method includes providing a resist film on a substrate using a radiation-sensitive composition. The resist film is exposed. The exposed resist film is developed using a developer solution. The developer solution includes no less than 80% by mass of an organic solvent. The radiation-sensitive composition includes at least two components including a first polymer and a radiation-sensitive acid generator. The first polymer includes a structural unit having an acid-labile group. One or more components of the radiation-sensitive composition have a group represented by a formula (1). A− represents —N−—SO2—RD, —COO−, —O− or —SO3−. —SO3− does not directly bond to a carbon atom having a fluorine atom. RD represents a linear or branched monovalent hydrocarbon group, or the like. X+ represents an onium cation. -A−X+ (1)
Abstract:
A resist pattern-insolubilizing resin composition is used in a resist pattern-forming method. The resist pattern-insolubilizing resin composition includes solvent and a resin. The resin includes a first repeating unit that includes a hydroxyl group in its side chain and at least one of a second repeating unit derived from a monomer shown by a following formula (1-1) and a third repeating unit derived from a monomer shown by a following formula (1-2), wherein for example, R1 represents a hydrogen atom, A represents a methylene group, R2 represents a group shown by a following formula (2-1) or a group shown by a following formula (2-2), R3 represents a methylene group, R4 represents a hydrogen atom, and n is 0 or 1, wherein each of R34 represents at least one of a hydrogen atom and a linear or branched alkyl group having 1 to 10 carbon atoms.
Abstract:
A resist pattern-forming method includes forming a resist coating film using a radiation-sensitive resin composition. The resist coating film is exposed and developed using a developer solution containing no less than 80% by mass of an organic solvent. The radiation-sensitive resin composition includes a polymer component including a polymer having an acid-labile group, and a radiation-sensitive acid generator. The polymer component includes, in an identical polymer or different polymers, a first structural unit having a first hydrocarbon group, and a second structural unit having a second hydrocarbon group. The first hydrocarbon group is an unsubstituted or substituted branched chain group, or the is like. The second hydrocarbon group has an adamantane skeleton. A molar ratio of the second hydrocarbon group to the first hydrocarbon group is less than 1. A proportion of a structural unit having a hydroxyl group in the polymer component is less than 5 mol %.
Abstract:
The present invention relates to a radiation-sensitive resin composition that contains: a compound that has a structure represented by the following formula (1); a first polymer that includes a fluorine atom; and a solvent. In the following formula (1), X represents a carbonyl group, a sulfonyl group or a single bond. Y+ represents a monovalent radiation-degradable onium cation. The first polymer preferably has at least one selected from the group consisting of a structural unit represented by the following formula (2a) and a structural unit represented by the following formula (2b). The first polymer preferably includes an alkali-labile group. The first polymer preferably includes an acid-labile group. It is preferred that a radiation-sensitive acid generator is further contained.
Abstract:
A resist pattern-forming method includes forming a resist coating film using a radiation-sensitive resin composition. The resist coating film is exposed and developed using a developer solution containing no less than 80% by mass of an organic solvent. The radiation-sensitive resin composition includes a polymer component including a polymer having an acid-labile group, and a radiation-sensitive acid generator. The polymer component includes, in an identical polymer or different polymers, a first structural unit having a first hydrocarbon group, and a second structural unit having a second hydrocarbon group. The first hydrocarbon group is an unsubstituted or substituted branched chain group, or the is like. The second hydrocarbon group has an adamantane skeleton. A molar ratio of the second hydrocarbon group to the first hydrocarbon group is less than 1. A proportion of a structural unit having a hydroxyl group in the polymer component is less than 5 mol %.
Abstract:
A resist pattern-forming method includes coating a radiation-sensitive resin composition on a substrate to provide a resist film. The resist film is exposed. The exposed resist film is developed using a developer solution including no less than 80% by mass of an organic solvent. The radiation-sensitive resin composition includes a polymer, a radiation-sensitive acid generator, and an acid diffusion controller which includes a compound having an amide group. The polymer has a weight average molecular weight in terms of the polystyrene equivalent of greater than 6,000 and includes a first structural unit that includes an acid-labile group. The polymer includes less than 5 mol % or 0 mol % of a second structural unit that includes a hydroxyl group.