摘要:
An apparatus for an electro-fluidic flow probe includes a body portion including an electro-fluidic bias tee for receiving (i) a fluid electrolyte and (ii) an electrical connection for providing an electrical potential to the fluid electrolyte; a first inlet including a tube extending from the first inlet to an outlet through the electro-fluidic bias tee; and a second inlet including the electrical connection having a wire that extends from the second inlet to the outlet through the electro-fluidic bias tee to transfer the electrical potential to a device under test.
摘要:
A method for forming porous metal structures and the resulting structure may include forming a metal structure above a substrate. A masking layer may be formed above the metal structure, and then etched using a reactive ion etching process with a mask etchant and a metal etchant. Etching the masking layer may result in the formation of a plurality of pores in the metal structure. In some embodiments, the metal structure may include a first end region, a second end region, and an intermediate region. Before etching the masking layer, a protective layer may be formed above the first end region and the second end region, so that the plurality of pores is contained within the intermediate region. In some embodiments, the intermediate metal region may be a nanostructure such as a nanowire.
摘要:
A technique is provided for manufacturing a nanogap in a nanodevice. An oxide is disposed on a wafer. A nanowire is disposed on the oxide. A helium ion beam is applied to cut the nanowire into a first nanowire part and a second nanowire part which forms the nanogap in the nanodevice. Applying the helium ion beam to cut the nanogap forms a signature of nanowire material in proximity to at least one opening of the nano gap.
摘要:
A nanogap of controlled width in-between noble metals is produced using sidewall techniques and chemical-mechanical-polishing. Electrical connections are provided to enable current measurements across the nanogap for analytical purposes. The nanogap in-between noble metals may also be formed inside a Damascene trench. The nanogap in-between noble metals may also be inserted into a crossed slit nanopore framework. A noble metal layer on the side of the nanogap may have sub-layers serving the purpose of multiple simultaneous electrical measurements.
摘要:
A technique includes forming a gradient channel with width and depth gradients. A mask is disposed on top of a substrate. The mask is patterned with at least one elongated channel pattern having different elongated channel pattern widths. A channel is etched in the substrate in a single etching step, the channel having a width gradient and a corresponding depth gradient both simultaneously etched in the single etching step according to the different elongated channel pattern widths in the mask.
摘要:
An apparatus for an electro-fluidic flow probe includes a body portion including an electro-fluidic bias tee for receiving (i) a fluid electrolyte and (ii) an electrical connection for providing an electrical potential to the fluid electrolyte; a first inlet including a tube extending from the first inlet to an outlet through the electro-fluidic bias tee; and a second inlet including the electrical connection having a wire that extends from the second inlet to the outlet through the electro-fluidic bias tee to transfer the electrical potential to a device under test.
摘要:
A metal structure including a first metal end region, a second metal end region, and an intermediate region between the first metal end region and the second metal end region, wherein the intermediate region comprises a metal nanostructure having a plurality of pores.
摘要:
A technique is provided for manufacturing a nanogap in a nanodevice. An oxide is disposed on a wafer. A nanowire is disposed on the oxide. A helium ion beam is applied to cut the nanowire into a first nanowire part and a second nanowire part which forms the nanogap in the nanodevice. Applying the helium ion beam to cut the nanogap forms a signature of nanowire material in proximity to at least one opening of the nanogap.
摘要:
Nanochannel sensors and methods for constructing nanochannel sensors. An example method includes forming a sacrificial line on an insulating layer, forming a dielectric layer, etching a pair of electrode trenches, forming a pair of electrodes, and removing the sacrificial line to form a nanochannel. The dielectric layer may be formed on insulating layer and around the sacrificial line. The pair of electrode trenches may be etched in the dielectric layer on opposite sides of the sacrificial line. The pair of electrodes may be formed by filling the electrode trenches with electrode material. The sacrificial line may be removed by forming a nanochannel between the at least one pair of electrodes.
摘要:
A method for forming porous metal structures and the resulting structure may include forming a metal structure above a substrate. A masking layer may be formed above the metal structure, and then etched using a reactive ion etching process with a mask etchant and a metal etchant. Etching the masking layer may result in the formation of a plurality of pores in the metal structure. In some embodiments, the metal structure may include a first end region, a second end region, and an intermediate region. Before etching the masking layer, a protective layer may be formed above the first end region and the second end region, so that the plurality of pores is contained within the intermediate region. In some embodiments, the intermediate metal region may be a nanostructure such as a nanowire.