Abstract:
Methods, apparatus, and computer-readable media are described to use multi-finger beamforming for multimeter wave communications. A base station associates with first and second user equipment. Weight sum rates are determined for the user equipment. Transmissions are scheduled to the user equipment based on the weight sum rates. Data is encoded for the first user equipment and transmitted based on the schedule. Data is encoded for the second user equipment and transmitted based on the schedule. The transmissions are multiplexed in the power domain.
Abstract:
Systems, methods, and computer-readable storage media for measuring one-way delay in multi-access networks (MAMS) are provided. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of a station (STA) and method of communication are generally described herein. The STA may be included in a first plurality of STAs affiliated with a first multi-link logical entity (MLLE). A plurality of links may be established between the first MLLE and a second MLLE, wherein the second MLLE may be affiliated with a second plurality of STAs. The STA may receive a first subset of a sequence of MAC protocol data units (MPDUs). A second subset of the sequence of MPDUs may be transmitted by another STA of the first plurality of STAs. The STA may transmit a block acknowledgement (BA) frame that includes: a number of BA bitmaps, configurable to values greater than or equal to one; and BA control information for each of the BA bitmaps.
Abstract:
Methods, apparatus, and computer-readable media are described to use multi-finger beamforming for multimeter wave communications. A base station associates with first and second user equipment. Weight sum rates are determined for the user equipment. Transmissions are scheduled to the user equipment based on the weight sum rates. Data is encoded for the first user equipment and transmitted based on the schedule. Data is encoded for the second user equipment and transmitted based on the schedule. The transmissions are multiplexed in the power domain.
Abstract:
Briefly, in accordance with one or more embodiments, an apparatus of a user equipment (UE) comprises baseband circuitry including one or more processors to decode a secondary synchronization signal (SSS) or a beam reference signal (BRS) received from an evolved Node B (eNB) to select a Tier-1 sector for receiving downlink transmissions from the eNB, decode a downlink control channel message received from the eNB at one or more fixed time offsets after the UE decodes the SSS to obtain index information for the Tier-1 sector to identify the Tier-1 sector, and if the Tier-1 sector has changed initiate a random access procedure to select an updated Tier-1 sector, and generate an updated Tier-1 sector index message to report to the eNB.
Abstract:
Embodiments of LWTP (long term evolution (LTE)/wireless local area network (WLAN) radio level integration Protocol) enhancements for reliable data radio bearer (DRB) switching are disclosed. A user equipment (UE) decodes a radio resource control (RRC) connection reconfiguration message, received from an evolved NodeB (eNB), the RRC connection reconfiguration message indicting switching DRBs from a first wireless transmission mode to second wireless transmission mode, and the RRC connection reconfiguration message including an uplink (UL) status report indicating a first missing UL sequence number, the UL status report being a UL LWIP status report. The UE causes reconfiguration of the UE according to the RRC connection reconfiguration message. The UE encodes, for transmission to the eNB, a RRC connection reconfiguration complete message. The UE encodes, for retransmission over the second wireless transmission mode, lost service data unit(s) (SDU) based on the UL status report.
Abstract:
A wireless local area network (WLAN) point-to-point communications link between an evolved universal terrestrial radio access network node B (eNB) and a user equipment device (or simply UE) is identified by UE/eNB media access control (MAC) identifiers on a per UE or per data radio bearer (DRB) basis for offloading cellular data from a long term evolution (LTE) link to the WLAN point-to-point communications link. A wireless local area network tunneling protocol (WLTP) includes packet formats and network protocol stack arrangements to support functions facilitated by the WLAN point-to-point communications link, such as, for example, identification of control and data traffic messages, DRB identification for WLTP packets, quality of service (QoS) delay and packet loss measurement, support of bearer splitting, and support of a general framework for offloading cellular traffic at different depths of the 3rd Generation Partnership Project (3GPP) network protocol stack.
Abstract:
Briefly, in accordance with one or more embodiments, a fixed device synchronizes with a downlink channel of a network, acquires a master information block including a last system update time; and executes cell selection without acquiring other system information if the last system update time is before the last system access time. Furthermore, the fixed device may listen only for system information block messages that it needs, and ignore other system information blocks. A bitmap may indicate which system information block messages should be listed to for fixed devices, and which may be ignored. In some embodiments, one or more system information blocks may be designated for fixed devices.
Abstract:
In a radio access network, user equipment (UE) is to encode signaling for sector-sweep transmission to a base station via a plurality of directional beams in a millimeter-wave radio band over a random-access shared channel during at least one contention period, and determine a transmission power setting for the directional transmission. The transmission power setting is based on a targeted received signal characteristic to be achieved at the base station using a selected beam direction, and the transmission power setting is determined based on transmission parameters of the UE and reception parameters of the base station, and on channel characteristics. The UE is to initiate transmission of the signaling using the transmission power setting for the plurality of directional beams, wherein the signaling is transmitted to be received according to a targeted received signal characteristic to be achieved at the base station.
Abstract:
Technology for measuring link performance using multiple radio access networks (RANs) is described. Data packets of a flow can be received, at a mobile node via a first connection with the mobile node with a first RAN. An active measurement can be initiated when a Real-time Traffic Flow Measurement (RTFM) triggering condition occurs. A second connection can be formed with the mobile node with a second RAN. Selected packets of the flow can be received for the active measurement using the first RAN and using the second RAN. An RTFM execution event can be communicated to a virtual access network (VAN) to move the flow from the first RAN to the second RAN when the active measurement of the selected packets is received via the second RAN is greater than a selected threshold value.