Abstract:
A calibration method applicable for an automation machining apparatus includes building a first stereoscopic characteristic model corresponding to an object, obtaining a stereoscopic image of the object, building a second stereoscopic characteristic model corresponding to the object based on the stereoscopic image, obtaining at least one error parameter corresponding to the second stereoscopic characteristic model by comparing the second stereoscopic characteristic model with the first stereoscopic characteristic model, and calibrating a machining parameter of the automation machining apparatus based on the at least one error parameter.
Abstract:
A method and an apparatus for reconstructing a three dimensional model of an object are provided. The method includes the following steps. A plurality of first depth images of an object are obtained. According to a linking information of the object, the first depth images are divided into a plurality of depth image groups. The linking information records location information corresponding to a plurality of substructures of the object. Each depth image group includes a plurality of second depth images, and the substructures correspond to the second depth images. According to the second depth image and the location information corresponding to each substructure, a local module of each substructure is built. According to the linking information, the local models corresponding to the substructures are merged, and the three-dimensional model of the object is built.
Abstract:
A thermal imaging apparatus for measuring a temperature of a target in a monitored area comprises a thermal imager, an optical image capturing device and a computing processing device. The thermal imager is configured to capture a thermal image of the monitored area. The optical image capturing device is configured to capture optical images of the monitored area. The computing processing device is configured to determine one of the optical images as a determined optical image synchronizing with the thermal image according to positions of blocks corresponding to the target in the thermal image and the optical images, perform calculation according to the thermal image and the determined optical image to obtain a measured distance between the target and the thermal imaging apparatus, and perform calibration according to the measured distance and the thermal image to obtain a calibrated temperature value of the target.
Abstract:
A calibration method for a robotic arm system is provided. The method includes: capturing an image of a calibration object fixed to a front end of the robotic arm by a visual device, wherein a pedestal of the robotic arm has a pedestal coordinate system, and the front end of the robotic arm has a first relative relationship with the pedestal, the front end of the robotic arm has a second relative relationship with the calibration object; receiving the image and obtaining three-dimensional feature data of the calibration object according to the image by a computing device; and computing a third relative relationship between the visual device and the pedestal according to the three-dimensional feature data, the first relative relationship, and the second relative relationship to calibrate a position error between a physical location of the calibration object and a predictive positioning-location generated by the visual device.
Abstract:
An image monitoring apparatus including an image sensing module and a processor is provided. The image sensing module is configured to obtain an invisible light dynamic image of an objective scene. The invisible light dynamic image includes a plurality of frames. The processor is configured to perform operations according to at least one frame of the invisible light dynamic image to determine a status of at least one live body corresponding to the objective scene to be one of a plurality of status types and determine at least one status valid region of the invisible light dynamic image, and set scene information of each pixel of the at least one status valid region to be one of a plurality of scene types according to the status type of the at least one live body. An image monitoring method is also provided.
Abstract:
A method and an apparatus for reconstructing a three dimensional model of an object are provided. The method includes the following steps. A plurality of first depth images of an object are obtained. According to a linking information of the object, the first depth images are divided into a plurality of depth image groups. The linking information records location information corresponding to a plurality of substructures of the object. Each depth image group includes a plurality of second depth images, and the substructures correspond to the second depth images. According to the second depth image and the location information corresponding to each substructure, a local module of each substructure is built. According to the linking information, the local models corresponding to the substructures are merged, and the three-dimensional model of the object is built.