Abstract:
An organic electroluminescence device including: an anode; a cathode; two or more emitting units that are disposed between the anode and the cathode, each unit having an emitting layer; and a charge-generating layer that is disposed between the emitting units, wherein the charge-generating layer comprises an N layer nearer to the anode and a P layer nearer to the cathode, and the P layer comprises a compound represented by the following formula (I).
Abstract:
An organic electroluminescence device including: an anode; a cathode; two or more emitting units that are disposed between the anode and the cathode, each unit having an emitting layer; and a charge-generating layer that is disposed between the emitting units, wherein the charge-generating layer comprises an N layer nearer to the anode and a P layer nearer to the cathode, and the P layer comprises a compound represented by the following formula (I).
Abstract:
An indenofluorenedione derivative having a specific structure, which is useful as a material for organic electroluminescence devices because the derivative is excellent in heat resistance and can be vapor-deposited on a substrate at moderate temperature. An organic electroluminescence device including an anode, a cathode, and an organic thin layer between the anode and the cathode, which contains the material for organic electroluminescence devices in the organic thin layer, is driven at a low driving voltage and has a long lifetime.
Abstract:
A polycarbonate copolymer includes: a repeating unit represented by a formula (1) below; and a repeating unit represented by a formula (2) below, in which the repeating unit represented by the formula (1) is formed from a bischloroformate oligomer having an average number of monomer units n represented by a formula (100) below in a range from 0.1 to 1.3. In the formulae (100) and (1), Ar1 represents a group represented by a formula (3) below. In the formula (2), Ar2 represents a divalent aromatic group. In the formula (3) below, X1 represents a single bond or an oxygen atom. R11 each independently represents a methyl group or an ethyl group.
Abstract:
A polycarbonate copolymer including a repeating unit represented by the following formula (1) and having a copolymerization molar ratio represented by Ar2/(Ar1+Ar2) of 30 mol % or more and 47 mol % or less. In the formula (1), Ar1 is a group represented by the following formula (2a) or (2b) and Ar2 is a group represented by the following formula (3); and n is an average number of repetition and is 1.12 or more and 2.34 or less.
Abstract:
A bischloroformate composition is represented by a formula (1) below, contains a plurality of Ar components, and has an average number of monomer units (m1), which is calculated by an expression (Numerical Expression 1) below, ranging from 1.0 to 1.99. The plurality of Ar components are each independently Ar1 or Ar2. The plurality of Ar components include at least one Ar1 and at least one Ar2. Ar1 is a group represented by a formula (2) below. Ar2 is a group represented by a formula (3) below. A molar composition ratio represented by Ar1/(Ar1+Ar2) ranges from 45 mol % to 99 mol %. average number of monomer units (m1)=1+(Mav−M1)/M2 (Numerical Expression 1)
Abstract:
A polycarbonate copolymer includes a repeating unit A represented by a formula (1) below and a repeating unit B represented by a formula (2) below, in which an abundance ratio represented by Ar1/(Ar1+Ar2) is in a range of 35 mol % to 75 mol % and an abundance ratio represented by Ar2/(Ar1+Ar2) is in a range of 25 mol % to 65 mol %,
Abstract:
A polycarbonate copolymer including a repeating unit represented by the following formula (1) and having a copolymerization molar ratio represented by Ar2/(Ar1+Ar2) of 30 mol % or more and 47 mol % or less. In the formula (1), Ar1 is a group represented by the following formula (2a) or (2b) and Ar2 is a group represented by the following formula (3); and n is an average number of repetition and is 1.12 or more and 2.34 or less.