Abstract:
The present invention relates to an electrophotographic photoreceptor, which includes a conductive substrate; an undercoat layer disposed on the conductive substrate and capable of conforming to the contour of the conductive substrate, a photoconductor charge generation layer disposed on the undercoat layer and capable of conforming to the contour of the undercoat layer, and a charge transport layer disposed on the photoconductor charge generation layer. The charge transport layer contains a charge transport material, a binder resin, a fluorine-containing resin, and a plurality of polyhedral oligomeric silsesquioxane (POSS) particles evenly dispersed in the binder resin, and the POSS particles are interconnected with at least one fluorine group and at least two non-fluoridated groups. By adding approximately 1% of the POSS particles and lubricant nanoparticles, a life-time improvement of at least 20% is achieved for an OPC drum.
Abstract:
An electrophotographic photoreceptor comprising at least a photosensitive layer on a conductive substrate, wherein the photosensitive layer is a laminate having a charge transport layer and a charge generation layer, the charge transport layer contains four or more types of compounds each having a maximum absorption wavelength falling within a wavelength range of from 300 nm to 600 nm in a tetrahydrofuran solution at 25° C., and maximum absorption wavelengths falling within the wavelength range of at least four types of the compounds of said four or more types of the compounds are separated from each other by 10 nm or more.
Abstract:
A charge transporting layer of an electrophotographic photosensitive member contains a polysiloxane resin having a terminal structure represented by the formula (1), at least one selected from the group consisting of a polycarbonate resin A having a structural unit represented by the formula (A) and a polyarylate resin B having a structural unit represented by the formula (B), and a charge transporting substance, wherein the content of the siloxane structure in the polysiloxane resin is not less than 0.5% by mass and not more than 10% by mass based on the total mass of whole resin in the charge transporting layer.
Abstract:
An electrophotographic photoreceptor includes an electroconductive substrate, a photosensitive layer provided on the electroconductive substrate, and an inorganic surface layer provided on the photosensitive layer, wherein a layer constituting an outermost surface of the photosensitive layer contains from 30% by weight to 70% by weight of silica particles and contains a biphenyl copolymerization type polycarbonate resin including a structural unit represented by the formula (PCA) and a structural unit represented by the formula (PCB) at a copolymerization ratio (PCA:PCB (molar ratio)) of 10:90 to 50:50: wherein, RP1, RP2, RP3, and RP4 each represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 7 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and XP1 represents a phenylene group, a biphenylene group, a naphthylene group, an alkylene group, or a cycloalkylene group.
Abstract:
An electrophotographic photoreceptor that satisfies excellent transparency, abrasion resistance, and electrophotographic properties (including sensitivity and residual potential after light irradiation) all together is provided. Specifically, an electrophotographic photoreceptor and a resin composition that include therein (1) a polycarbonate resin (A) having a structural unit represented by the following formula (I) and (2) at least one selected from a polycarbonate resin (B) synthesized from a source material that includes therein a bisphenol represented by the following formula (II) and a polyester resin (B′) synthesized from a source material that includes therein a bisphenol represented by the following formula (II). In formulas (I) and (II), each of Ra, Rb, Rc, Rd, Re, and Rf represents, independently from one another, a substituted or non-substituted alkyl group, a substituted or non-substituted cycloalkyl group, or a substituted or non-substituted phenyl group. Each of p, q, r, s, t, and u represents, independently from one another, an integer of 0 to 4. Rg represents an alkyl group. X represents an alkylene group, an isopropylidene group, a sec-butylidene group, a cycloalkylene group, a cycloalkylidene group, or the like. Y represents a single bond or —O—. Each of mA and nA represents a composition ratio (mole ratio) of the structural unit in the round brackets.
Abstract:
A surface layer of an electrophotographic photosensitive member contains (α) a particular siloxane-modified resin, (β) a particular compound, and a charge transporting substance. (β) is at least one compound selected from the group consisting of hexanol, heptanol, cyclohexanol, benzyl alcohol, ethylene glycol, 1,4-butanediol, 1,5-pentanediol, diethylene glycol, diethylene glycol ethyl methyl ether, ethylene carbonate, propylene carbonate, nitrobenzene, pyrrolidone, N-methylpyrrolidone, methyl benzoate, ethyl benzoate, benzyl acetate, ethyl 3-ethoxypropionate, acetophenone, methyl salicylate, dimethyl phthalate, and sulfolane.
Abstract:
A charge-transporting layer, which is a surface layer of an electrophotographic photosensitive member, has a matrix-domain structure having a matrix containing constituent β (a polycarbonate resin having a predetermined repeating structural unit) and a charge-transporting substance, and a domain containing constituent α (a polycarbonate resin having a repeating structural unit having a predetermined siloxane moiety).
Abstract:
The presently disclosed embodiments are directed to charge transport layers useful in electrostatography. More particularly, the embodiments pertain to an electrostatographic imaging member having imaging layers that exhibit improved electrical performance. In these embodiments, both the charge generation layer and charge transport layer comprise a tetra-aryl polycarbonate copolymer.
Abstract:
In the case where an uneven structure is formed on the surface of cylindrical electrophotographic photosensitive members, for the purpose of reducing the variation of the uneven structure between the individual cylindrical electrophotographic photosensitive members even when a large number of cylindrical electrophotographic photosensitive members are continuously processed, an insert is inserted into the interior of a cylindrical electrophotographic photosensitive member including a cylindrical substrate and a surface layer, the surface uneven structure of a molding member is transferred to and formed on the surface of the surface layer of the photosensitive member. The insert includes an abutting part having an outer peripheral surface capable of abutting on the inner peripheral surface of the substrate, a connecting part positioned inside of the abutting part in the radical direction and a shaft part positioned inside of the connecting part in the radical direction.
Abstract:
Provided are a method of producing an electrophotographic photosensitive member, particularly, a method of producing an electrophotographic photosensitive member and an organic device by which, in a method of forming a charge transporting layer, the stability of an application liquid for the layer after long-term storage is improved while the usage of an organic solvent in the application liquid is curtailed, and the layer having high uniformity is formed. The method is a method of producing an electrophotographic photosensitive member which includes a support and a charge transporting layer formed thereon, the method including: preparing a solution including: a first liquid whose solubility in water under 25° C. and 1 atmosphere is 1.0 mass % or less; a second liquid whose solubility in water under 25° C. and 1 atmosphere is 5.0 mass % or more; a charge transporting substance; and a binder resin; preparing an emulsion by dispersing the solution in water; forming a coat for the layer on the support by using the emulsion; and forming the layer by heating of the coat.