Abstract:
An electrophotographic photosensitive member comprises a charge-transporting layer which is a surface layer of the electrophotographic photosensitive member; wherein the charge-transporting layer has a matrix-domain structure having: a matrix comprising a component β and a component γ, and a domain comprising a component α.
Abstract:
Provided is an electrophotographic photosensitive member, including: a support; and a photosensitive layer, which is provided on the support, in which: a surface layer of the electrophotographic photosensitive member includes a terminal siloxane-containing polyester resin having a specific structure; and a lower layer provided in contact with the surface layer includes a polycarbonate resin, a polyester resin, or a polyvinyl acetal resin, having a specific structure.
Abstract:
An electrophotographic photosensitive member having a surface layer which contains a silicon-containing compound in an amount of less than 0.6% by mass based on the whole solid content in the surface layer, where the silicon-containing compound in the surface layer has a siloxane moiety in an amount of 0.01% by mass or more, based on the whole solid content in the surface layer, and its surface has specific depressions. Also disclosed are a process cartridge and an electrophotographic apparatus which have the electrophotographic photosensitive member.
Abstract:
An electrophotographic photosensitive member comprises a charge-transporting layer which is a surface layer of the electrophotographic photosensitive member; wherein the charge-transporting layer has a matrix-domain structure having: a matrix comprising a component [β] and a component [γ] (charge-transporting substances having specific structures), and a domain comprising a component [α](resin [α1], or resin [α1] and resin [α2]).
Abstract:
An electrophotographic photosensitive member having excellent electrophotographic properties, a method of manufacturing the electrophotographic photosensitive member, and a process cartridge and an electrophotographic apparatus each having the electrophotographic photosensitive member are provided. The surface layer of the electrophotographic photosensitive member includes a polymer having a specific repeating structural unit and fluorine-atom-containing resin particles. The fluorine-atom-containing particles in the surface layer are dispersed so as to be provided with particle sizes almost up to those of primary particles.
Abstract:
A method for preparing in high productivity and stably an electrophotographic photosensitive member having depressed portions on its surface, is provided. The method is characterized in that a coating liquid for a surface layer which includes a solvent including a hydrophilic solvent and a hydrophobic solvent and a polymer compound soluble in the hydrophobic solvent is used; the hydrophilic solvent has a boiling point equal to or higher than that of the hydrophobic solvent; the hydrophilic solvent has a dipole moment of 0 or more and less than 2.8, obtained by a structure optimized calculation using a semiempirical molecular orbital calculation; the total mass of the hydrophobic solvent is 50 mass % or more and less than 100 mass % of the total mass of the solvent included in the coating liquid for a surface layer; and after the coating liquid for a surface layer is applied, the depressed portions are formed by condensation on the surface on which the coating liquid for a surface layer is applied.
Abstract:
A multilayer ceramic capacitor 1 having internal electrode layers 3, internal dielectric layers 2 having the thickness of less than 2 μm, and external dielectric layers 20 wherein; the internal dielectric layers 2 and the external dielectric layers 20 include a plural number of dielectric particles 2a, 20a, and when y1 is ratio(D50a/D50b) of D50a and D50b where D50a is an average particle size of dielectric particles 2a included in the internal dielectric layers 2 and D50b is an average particle size of dielectric particles 20a included in the external dielectric layer 20 and located at least 5 μm away from an internal electrode layer 3a, arranged outermost part of all the internal electrode layers, to the stacked direction, and x is thickness of the internal dielectric layer 2, y1 and x satisfy the following equations, y1≦−0.75x+2.275 and y1≧−0.75x+1.675. According to the present invention, even when thickness of internal dielectric layers 2 were made thinner, a multilayer ceramic capacitor 1 wherein improvements in all kinds of electric characteristics, specially an improvement in TC bias characteristic while having sufficient dielectric constant can be expected.
Abstract:
A multilayer ceramic capacitor including an internal electrode layer, an internal dielectric layer having a thickness of less than 2 μm, and an external dielectric layer is provided, wherein the internal dielectric layer and external dielectric layer contain a plurality of dielectric particles, and when assuming that an average particle diameter of the entire dielectric particles in the internal dielectric layer is D50a (unit: μm), an average particle diameter of the entire dielectric particles existing at a position being away at least by 5 μm from the outermost internal electrode layer in the thickness direction is D50b (unit: μm), a ratio (D50a/D50b) of the D50a and D50b is y (no unit), standard deviation of a particle size distribution of the entire dielectric particles in the internal dielectric layer is σ (no unit), and a ratio that dielectric particles (coarse particles) having an average particle diameter of 2.25 times of the D50a exist in the entire dielectric particles is p (unit: %), the y and x satisfy a relationship of y −0.75x+1.740, the σ satisfies σ
Abstract:
A secondary battery capable of improving the cycle characteristics and the swollenness characteristics is provided. The secondary battery includes a cathode, an anode, and an electrolytic solution. The anode includes an anode active material layer having a plurality of fine pores on an anode current collector. The anode active material layer contains an anode active material and an anode binder. A change rate of a mercury intrusion into the plurality of fine pores measured by mercury penetration technique is distributed to show a peak in the pore diameter range from 30 nm to 10000 nm, both inclusive.
Abstract:
A charge-transporting layer, which is a surface layer of an electrophotographic photosensitive member, has a matrix-domain structure having a matrix containing constituent β (a polyester resin having a predetermined repeating structural unit) and a charge-transporting substance, and a domain containing constituent α (a polycarbonate resin having a repeating structural unit having a predetermined siloxane moiety).