Abstract:
A mutant Bacillus subtilis, which does not express a functional KASIIIA and/or KASIIIB, and method of making; a mutant Rhodospirillum rubrum, which does not express a functional PhaC1, PhaC2, and/or PhaC3, and method of making; method of characterizing substrate specificity of KASIII; method of making mutant KASIII with altered substrate specificity and/or altered level of activity and nucleic acid, vector, host cell/organism, and mutant KASIII; an in vitro, high-throughput spectrophotometric method of assaying KASIII activity; and materials and methods for using KASIII for production of bi-functional fatty acids and the materials so produced.
Abstract:
A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
Abstract:
A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
Abstract:
A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
Abstract:
A method of increasing production of fatty acids comprising introducing into a host cell or organism and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid encoding a mutant acyl-ACP TE or a chimeric C. viscosissima acyl-ACP TE; a host cell or organism comprising the nucleic acid; a mutant acyl-ACP TE or chimeric C. viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE; and a method of altering the level of activity of a plant acyl-ACP TE.
Abstract:
A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
Abstract:
A method of producing bi-functional fatty acids comprising introducing into a host cell or organism, which comprises one or more ω- or ω-1 functionalized acyl-CoAs, and expressing therein a KASIII, which can use one or more of the ω- or ω-1 functionalized acyl-CoAs as a substrate; a method of producing a ω-1 hydroxy branched fatty acid, a ω-1 branched fatty acid, or a combination thereof by culturing a mutant E. coli, which does not express a functional KASIII from the endogenous fabH gene and expresses a phaA and a phaB and a functional exogenous KASIII; and a mutant E. coli, a method of making the mutant, a culture comprising the mutant, and a composition comprising ω-1 hydroxy branched fatty acids, a ω-1 branched fatty acids, or a combination thereof obtained from the culture.
Abstract:
A mutant Bacillus subtilis, which does not express a functional KASIIIA and/or KASIIIB, and method of making; a mutant Rhodospirillum rubrum, which does not express a functional PhaC1, PhaC2, and/or PhaC3, and method of making; method of characterizing substrate specificity of KASIII; method of making mutant KASIII with altered substrate specificity and/or altered level of activity and nucleic acid, vector, host cell/organism, and mutant KASIII; an in vitro, high-throughput spectrophotometric method of assaying KASIII activity; and materials and methods for using KASIII for production of bi-functional fatty acids and the materials so produced.
Abstract:
A method of increasing production of fatty acids comprising introducing into a host and expressing therein an acyl-acyl carrier protein (ACP) thioesterase (TE) from Bryantella formatexigens or a mutant thereof; a method of making a mutant B. formatexigens acyl-ACP TE; a method of making a chimeric Cuphea viscosissima acyl-ACP TE; a nucleic acid molecule comprising a nucleotide sequence encoding a mutant acyl-ACP TE or a chimeric Cuphea viscosissima acyl-ACP TE; a host comprising the nucleic acid molecule; a mutant acyl-ACP TE or chimeric Cuphea viscosissima acyl-ACP TE; a method of altering the specificity of a plant acyl-ACP TE for at least one of its substrates comprising introducing into the plant acyl-ACP TE a substrate specificity-altering mutation; and a method of altering the level of activity of a plant acyl-ACP TE.
Abstract:
A method of producing bi-functional fatty acids comprising introducing into a host cell or organism, which comprises one or more ω- or ω-1 functionalized acyl-CoAs, and expressing therein a KASIII, which can use one or more of the ω- or ω-1 functionalized acyl-CoAs as a substrate; a method of producing a ω-1 hydroxy branched fatty acid, a ω-1 branched fatty acid, or a combination thereof by culturing a mutant E. coli, which does not express a functional KASIII from the endogenous fabH gene and expresses a phaA and a phaB and a functional exogenous KASIII; and a mutant E. coli, a method of making the mutant, a culture comprising the mutant, and a composition comprising ω-1 hydroxy branched fatty acids, a ω-1 branched fatty acids, or a combination thereof obtained from the culture.