Abstract:
In a wireless network, a user equipment (UE) can communicate with an Evolved Node B (eNodeB). During at least some times, the UE transmits a data stream to the eNodeB, over one of several available antenna states on the UE. The antenna states can include one or more tuning states for each antenna port on the UE. At predetermined times, which can be periodic, the UE ceases transmission of the data stream, transmits a test signal sequentially over each of its antenna states, receives a signal back from the eNodeB indicating which of the antenna states provides the strongest signal, and switches to the indicated antenna state. After switching, the UE can resume transmission of the data stream over the indicated antenna state. In some examples, the UE can repeat the antenna tuning/retuning process periodically.
Abstract:
Described is an apparatus of an enhanced Machine Type Communication (eMTC) capable User Equipment (UE) operable to communicate with an eMTC capable Evolved Node-B (eNB) on a wireless network. The apparatus may comprise a first circuitry and a second circuitry. The first circuitry may be operable to initiate an intra-frequency measurement corresponding with an intra-frequency Measurement Gap Length (MGL) of a first duration. The second circuitry may be operable to initiate an inter-frequency measurement corresponding with an inter-frequency MGL of a second duration. The first duration may be shorter than the second duration. The first and second durations may be established by dedicated and separated configuration inputs. The second circuitry may also be operable to schedule a plurality of intra-frequency measurements in accordance with an intra-frequency measurement gap pattern, and may be operable to schedule a plurality of inter-frequency measurements in accordance with an inter-frequency measurement gap pattern.
Abstract:
In a wireless network, a user equipment (UE) can communicate with an Evolved Node B (eNodeB). During at least some times, the UE transmits a data stream to the eNodeB, over one of several available antenna states on the UE. The antenna states can include one or more tuning states for each antenna port on the UE. At predetermined times, which can be periodic, the UE ceases transmission of the data stream, transmits a test signal sequentially over each of its antenna states, receives a signal back from the eNodeB indicating which of the antenna states provides the strongest signal, and switches to the indicated antenna state. After switching, the UE can resume transmission of the data stream over the indicated antenna state. In some examples, the UE can repeat the antenna tuning/retuning process periodically.
Abstract:
In a wireless network, a user equipment (UE) can communicate with an Evolved Node B (eNodeB). During at least some times, the UE transmits a data stream to the eNodeB, over one of several available antenna states on the UE. The antenna states can include one or more tuning states for each antenna port on the UE. At predetermined times, which can be periodic, the UE ceases transmission of the data stream, transmits a test signal sequentially over each of its antenna states, receives a signal back from the eNodeB indicating which of the antenna states provides the strongest signal, and switches to the indicated antenna state. After switching, the UE can resume transmission of the data stream over the indicated antenna state. In some examples, the UE can repeat the antenna tuning/retuning process periodically.
Abstract:
A testing system and method, for testing wireless communication devices, may include an anechoic far field chamber with a dual-axis positioning system for rotating the device under test. The testing system may further include a measuring antenna and a number of link antennas distributed throughout the testing system. A number of receive (RX) and transmit (TX) testing configurations for 5G NRs, using the testing system, are described in detail.
Abstract:
An apparatus is configured to be employed within a base station. The apparatus comprises baseband circuitry which includes a radio frequency (RF) interface and one or more processors. The one or more processors are configured determine repetition level (RL) thresholds, allocate downlink resources, wherein the downlink resources include a repetition level (RL), send downlink data to the RF interface for transmission to a user equipment (UE) according to the RL, receive repetition feedback from the RF interface based on the transmission to the UE, and update aspects or the allocation of the downlink resources based on the repetition feedback.