Abstract:
A method comprises: capturing, with an image sensor, at least one image of a head of a user, wherein the at least one image includes an image of an eye of the user; processing the at least one image to obtain position information for features of the head and eye of the user; and determining, based on the position information for the features of the head and eye of the user, at least one parameter of a daily use eyewear frame.
Abstract:
A method comprises: disposing a measurement contact lens upon an eye of a user; capturing at least one image of the eye and the measurement contact lens with an image sensor while the measurement contact lens is on the eye of the user and the eye is illuminated; processing the at least one image to obtain a centration of the measurement contact lens on the cornea of the eye; processing the at least one image to obtain an angular orientation of the measurement contact lens on the cornea of the eye; and determining, based on the centration and angular orientation of the measurement contact lens on the cornea of the eye, at least one parameter of a first contact lens to be worn on the eye with display eyewear or a second contact lens to be worn on the eye without the display eyewear.
Abstract:
According to some embodiments, a transparent screen includes a first transparent substrate having a first transparent substrate index of refraction and including a surface relief pattern, a partially reflective coating formed on the surface relief pattern, and a second transparent substrate bonded over the partially reflective coating with an optical adhesive having the first transparent substrate index of refraction.
Abstract:
An apparatus and method for providing pixelated occlusion is disclosed. The apparatus includes a display, a unitary and transmissive optical component, and a contact lens. The display provides a display image. The unitary reflective and transmissive optical component receives the display image and forms a reflected display image having a first polarization and receives a scene image and forms a transmitted scene image. The contact lens forms a combined image including the reflected display image and the transmitted scene image. The pixelated display includes one or more occluding pixels having a second polarization with the first polarization substantially orthogonal to the second polarization. The pixelated display is included anterior to the unitary and reflective optical component.
Abstract:
According to some embodiments, a transparent screen includes a first transparent substrate having a first transparent substrate index of refraction and including a surface relief pattern, a partially reflective coating formed on the surface relief pattern, and a second transparent substrate bonded over the partially reflective coating with an optical adhesive having the first transparent substrate index of refraction.
Abstract:
Various embodiments of the present invention provide systems, methods, and processes for constructing a contact lens. In one embodiment, a contact lens assembly is provided, comprising: a curved polymer polarizer with an aperture; a lenslet disposed inside the aperture, wherein the lenslet enables imaging near objects; and a filter attached to the lenslet. In further embodiments, a method for fabricating a flexible contact lens is provided, comprising: fabricating an element having an extrusion; providing a front concave mold, wherein the front mold has an intrusion to accommodate the extrusion of the optical element; affixing the extrusion of the optical element to the intrusion of the front mold; attaching a back convex mold to the front concave mold, thereby forming a mold cavity; and filling the mold cavity with a pre-polymerized liquid, whereby upon polymerization, the pre-polymerized liquid forms the flexible contact lens and the optical element is partially encapsulated within the lens.
Abstract:
An optical article of manufacture and a method of making the article of manufacture are disclosed. The article of manufacture includes an optical component including a junction between a first region having a first optical power and a second region having a second optical power. The first optical power is different from the second optical power. The article further includes an occlusion ring included in the optical component and aligned with the junction. The method includes forming a thin film polymer layer on a substrate. The method further includes forming an occlusion ring on the thin film polymer layer. The occlusion ring has an inner occlusion ring region and an outer occlusion ring region. The method further includes forming an outer wire grid polarizer on the outer occlusion ring region.
Abstract:
Various embodiments of the present invention provide systems, methods, and processes for constructing a contact lens. In one embodiment, a contact lens assembly is provided, comprising: a curved polymer polarizer with an aperture; a lenslet disposed inside the aperture, wherein the lenslet enables imaging near objects; and a filter attached to the lenslet. In further embodiments, a method for fabricating a flexible contact lens is provided, comprising: fabricating an element having an extrusion; providing a front concave mold, wherein the front mold has an intrusion to accommodate the extrusion of the optical element; affixing the extrusion of the optical element to the intrusion of the front mold; attaching a back convex mold to the front concave mold, thereby forming a mold cavity; and filling the mold cavity with a pre-polymerized liquid, whereby upon polymerization, the pre-polymerized liquid forms the flexible contact lens and the optical element is partially encapsulated within the lens.
Abstract:
A method comprises: capturing, with an image sensor, at least one image of a head of a user, wherein the at least one image includes an image of an eye of the user; processing the at least one image to obtain position information for features of the head and eye of the user; and determining, based on the position information for the features of the head and eye of the user, at least one parameter of a daily use eyewear frame.
Abstract:
A method includes molding a lens, the lens including a front portion and a rear portion and an intermediate portion therebetween, the rear portion adapted to be disposed in the direction of the back of the eye, the front portion adapted to be disposed in the direction of the front of an eye, wherein molding the lens includes disposing conductive parallel nanofilaments on or within the lens. A molded contact lens includes a rear portion adapted to be disposed in the direction of the back of the eye, and a front portion that is adapted to be disposed in the direction of the front of the eye. The molded lens includes conductive parallel nanofilaments located on or within a central region of the molded lens.