Abstract:
A measurement system is configured to measure a surface structure of a sample. The surface of the sample has a thin film and a via, the depth of the via is larger than the thickness of the thin film. The measurement system includes a light source, a first light splitter, a first aperture stop, a lens assembly, a second aperture stop, a spectrum analyzer and an analysis module. The first light splitter disposed in the light emitting direction of the light source. The first aperture stop disposed between the light source and the first light splitter. The lens assembly is disposed between the first light splitter and the sample. The second aperture stop is disposed between the lens assembly and the first light splitter. The spectrum analyzer is disposed to at a side of the first light splitter opposite to the sample.
Abstract:
A three-dimension measurement device includes a moving device, a projecting device, a surface-type image-capturing device and a processing device. The moving device carries an object, and moves the object to a plurality of positions. The projecting device generates a first light to the object. The surface-type image-capturing device senses a second light generated by the object in response to the first light to generate a phase image on each of the positions. The processing device is coupled to the surface-type image-capturing device and receives the phase images. The processing device performs a region-of-interest (ROI) operation for the phase images to generate a plurality of ROI images. The processing device performs a multi-step phase-shifting operation for the ROI images to calculate the surface height distribution of the object.
Abstract:
A measurement system is provided to measure a hole of a target, including a light source generation unit, a capturing unit and a processing unit. The light source generation unit generates a light source and focuses the light source on a plurality of different height planes. The capturing unit captures a plurality of images scattered from the plurality of different height planes. The processing unit obtains boundaries of the hole on the plurality of different height planes according to the plurality of images, samples image intensities of different azimuth angles on the boundaries of the hole on each of the plurality of different height planes to generate a plurality of sampling values, and develops a sidewall image of the hole according to the plurality of sampling values, the plurality of different height planes and the different azimuth angles.
Abstract:
A scattering measurement system is provided, including: a light source generator for generating a detection light beam with discontinuous multi-wavelengths, and generating a multi-order diffraction light beam with three-dimensional feature information when the detection light beam is incident on an object; a detector having a photosensitive array for receiving and converting the multi-order diffraction light beam into multi-order diffraction signals with the three-dimensional feature information; and a processing module for receiving the multi-order diffraction signals and comparing the multi-order diffraction signals with multi-order diffraction feature patterns in a database so as to analyze the three-dimensional feature information of the object.
Abstract:
According to one embodiment of a method for measuring a stacking overlay error, the method may use a differential interference contrast microscope system to measure a stacking overlay mark and focus on one overlay mark of a lower layer overlay mark and an upper layer overlay mark when measuring the stacking overlay mark. Then, the method uses an image analysis scheme to obtain an image of the stacking overlay mark from a photo-detector and obtains a first reference position of the lower layer overlay mark in a direction and a second reference position of the upper layer overlay mark in the direction from the image; and computes the stacking overlay error in the direction according to the first and the second reference positions.
Abstract:
A heterogeneous integration detecting method and a heterogeneous integration detecting apparatus are provided. The heterogeneous integration detecting method includes the following. Under the condition of maintaining the same relative distance between an interference objective lens and a sample, the relative posture of the interference objective lens and the sample is continuously adjusted according to the change of an image of the sample in the field of view of the interference objective lens until a first optical axis of the interference objective lens is determined to be substantially perpendicular to the surface of the sample according to the image. The interference objective lens is replaced with an imaging objective lens and the geometric profile of at least one via of the sample is detected. A second optical axis of the imaging objective lens after replacement overlaps with the first optical axis of the interference objective lens before replacement.
Abstract:
According to one embodiment of a method for measuring a stacking overlay error, the method may use a differential interference contrast microscope system to measure a stacking overlay mark and focus on one overlay mark of a lower layer overlay mark and an upper layer overlay mark when measuring the stacking overlay mark. Then, the method uses an image analysis scheme to obtain an image of the stacking overlay mark from a photo-detector and obtains a first reference position of the lower layer overlay mark in a direction and a second reference position of the upper layer overlay mark in the direction from the image; and computes the stacking overlay error in the direction according to the first and the second reference positions.
Abstract:
A heterogeneous integration detecting method and a heterogeneous integration detecting apparatus are provided. The heterogeneous integration detecting method includes the following. Under the condition of maintaining the same relative distance between an interference objective lens and a sample, the relative posture of the interference objective lens and the sample is continuously adjusted according to the change of an image of the sample in the field of view of the interference objective lens until a first optical axis of the interference objective lens is determined to be substantially perpendicular to the surface of the sample according to the image. The interference objective lens is replaced with an imaging objective lens and the geometric profile of at least one via of the sample is detected. A second optical axis of the imaging objective lens after replacement overlaps with the first optical axis of the interference objective lens before replacement.
Abstract:
A measurement system is provided to measure a hole of a target, including a light source generation unit, a capturing unit and a processing unit. The light source generation unit generates a light source and focuses the light source on a plurality of different height planes. The capturing unit captures a plurality of images scattered from the plurality of different height planes. The processing unit obtains boundaries of the hole on the plurality of different height planes according to the plurality of images, samples image intensities of different azimuth angles on the boundaries of the hole on each of the plurality of different height planes to generate a plurality of sampling values, and develops a sidewall image of the hole according to the plurality of sampling values, the plurality of different height planes and the different azimuth angles.