Abstract:
A battery safety device is provided, which may be disposed inside a battery, and may include a conductive handle and a temperature-controlled expansion element. The conductive handle may include a connection portion, a left extension portion, a right extension portion, a top extension portion and an actuating sheet. The left extension portion and the right extension portion may be connected to the connection portion and contact the first conductive portion of the polar winding of the battery. The top extension portion may be connected to the connection portion and contact the first electrode terminal of the battery. The actuating sheet may be connected to the connection portion, and there may be an accommodating space between the actuating sheet and the polar winding, and the temperature-controlled expansion element may be disposed in the accommodating space and contact the actuating sheet and the first conductive portion.
Abstract:
An actuating structure of battery safety valve includes an end plate, a safety valve, a positive-terminal conductive plate, a negative-terminal conductive plate, a ventilate plate and an actuating plate. A positive terminal and a negative terminal penetrate through the end plate and the safety valve. The positive-terminal and the negative-terminal conductive plates are disposed on the end plate and extended from the positive terminal and the negative terminal to the safety valve, respectively. The ventilate plate is disposed on the end plate and corresponding to the safety valve. The actuating plate is disposed between the ventilate plate and the safety valve, and restricted under a normal condition by the safety valve. When an internal pressure of the battery exceeds a breaking pressure of the safety valve, the actuating plate is released, so that an electric connection path is formed between the positive and the negative terminals.
Abstract:
A cap assembly for a battery includes a roll combination member, a terminal combination member, an electrode terminal, a strength reinforcing block, a cap, and a pad assembly. The roll combination member includes at least one opening, so that terminal disposed portions of 2k rolls are capable of passing through the opening and k is an integer greater than 1, wherein one terminal disposed portion is formed by bending portions of central members of two adjacent rolls. The terminal combination member, the electrode terminal, the strength reinforcing block, the cap, and the pad assembly are sequentially combined on the roll combination member, wherein the electrode terminal includes an electrically conductive portion and a thermally conductive portion which surrounds the electrically conductive portion. The cap assembly is electrically connected to the bending portions at the same side of the 2k rolls.
Abstract:
A battery module with thermal dissipation and thermal runaway prevention is provided, including at least one battery and a fireproof thermal insulation layer. The at least one battery may include a plurality of battery cells electrically connected through conductors. The fireproof thermal insulation layer includes a plurality of battery holes for disposing the battery cells therein and a plurality of air holes vertically penetrating the fireproof thermal insulation layer. A side of each of the battery cells is sleeved in the fireproof thermal insulation layer, and the plurality of air holes are provided between adjacent ones of the plurality of battery holes. The fireproof thermal insulation layer has a heat transfer coefficient that decreases with an increase in the temperature of the fireproof thermal insulation layer.
Abstract:
A cap assembly for a battery includes a roll combination member, a terminal combination member, an electrode terminal, a strength reinforcing block, a cap, and a pad assembly. The roll combination member includes at least one opening, so that terminal disposed portions of 2k rolls are capable of passing through the opening and k is an integer greater than 1, wherein one terminal disposed portion is formed by bending portions of central members of two adjacent rolls. The terminal combination member, the electrode terminal, the strength reinforcing block, the cap, and the pad assembly are sequentially combined on the roll combination member, wherein the electrode terminal includes an electrically conductive portion and a thermally conductive portion which surrounds the electrically conductive portion. The cap assembly is electrically connected to the bending portions at the same side of the 2k rolls.
Abstract:
A battery module with thermal dissipation and thermal runaway prevention is provided, including at least one battery and a fireproof thermal insulation layer. The at least one battery may include a plurality of battery cells electrically connected through conductors. The fireproof thermal insulation layer includes a plurality of battery holes for disposing the battery cells therein and a plurality of air holes vertically penetrating the fireproof thermal insulation layer. A side of each of the battery cells is sleeved in the fireproof thermal insulation layer, and the plurality of air holes are provided between adjacent ones of the plurality of battery holes. The fireproof thermal insulation layer has a heat transfer coefficient that decreases with an increase in the temperature of the fireproof thermal insulation layer.
Abstract:
A flexible-envelope type battery and an electrically conductible sealing structure thereof and an assembling method thereof are provided. The battery includes an electrode pair, a flexible envelope and a pair of electrically conductible sealing structures. Each sealing structure includes a conductive terminal and a fixed member. The conductive terminal includes a bottom board and a protruding block, for conducting an electric current from the electrode pair to the outside. The bottom board is disposed within the flexible envelope and combined with the electrode pair. The protruding block is disposed on the bottom board for passing through and protruding from an upper surface of the flexible envelope. The fixed member is for tightly fixing the flexible envelope and the conductive terminal.
Abstract:
A flexible-envelope type battery and an electrically conductible sealing structure thereof and an assembling method thereof are provided. The battery includes an electrode pair, a flexible envelope and a pair of electrically conductible sealing structures. Each sealing structure includes a conductive terminal and a fixed member. The conductive terminal includes a bottom board and a protruding block, for conducting an electric current from the electrode pair to the outside. The bottom board is disposed within the flexible envelope and combined with the electrode pair. The protruding block is disposed on the bottom board for passing through and protruding from an upper surface of the flexible envelope. The fixed member is for tightly fixing the flexible envelope and the conductive terminal.
Abstract:
A fast charging lithium-ion battery includes a positive electrode plate, a negative electrode plate, a separator, and an electrolyte. The positive electrode plate includes a positive current collector and a positive active material layers. The negative electrode plate includes a negative current collector and negative active material layers. The negative active material layers include titanium niobium oxide, lithium titanate, or a combination thereof. The separator is disposed between the positive electrode plate and the negative electrode plate. The electrolyte contacts the positive electrode plate and the negative electrode plate. The negative active material layers have an effective area corresponding to the positive electrode plate. The negative active material layers have a thickness on one surface of the negative current collector. A ratio of the effective area to the thickness is greater than 2×105 mm.
Abstract:
A fireproof battery module including a plurality of battery cells and at least one fireproof layer. The battery cells are electrically connected to one another. The at least one fireproof layer is located between two of the plurality of battery cells that are adjacent to each other. The fireproof layer includes a heat absorbing part and a heat insulation part that are connected to each other. The heat absorbing part includes a vaporizable material and a thermal conductivity of the heat insulation part is lower than a thermal conductivity of the heat absorbing part.