Abstract:
A method of manufacturing a sensor device is provided. In the method, sensing electrodes are formed on a substrate, a sensing material layer is formed on the sensing electrodes. The sensing material layer is etched to form a first nanowire sensing region, a second nanowire sensing region and a third nanowire sensing region respectively between every two sensing electrodes of the sensing electrodes. A dielectric layer is formed to cover the first nanowire sensing region, the second nanowire sensing region and the third nanowire sensing region, and the first nanowire sensing region and the third nanowire sensing region are exposed.
Abstract:
A gas sensing apparatus including a gas sensor, a gas determining circuit and a gas database is provided. The gas sensor includes at least two nanowire sensors. The gas sensor is configured to sense multiple gases and output a plurality of sensing signals. The gas determining circuit is coupled to the gas sensor. The gas determining circuit is configured to receive the sensing signals and determine types of the gases according to reference data and the sensing signals. The gas database is coupled to the gas determining circuit. The gas database stores the reference data and outputs the reference data to the gas determining circuit. Each of the nanowire sensors includes at least one nanowire. Structural properties of the nanowires are different.
Abstract:
A method of manufacturing a sensor device is provided. In the method, sensing electrodes are formed on a substrate, a sensing material layer is formed on the sensing electrodes. The sensing material layer is etched to form a first nanowire sensing region, a second nanowire sensing region and a third nanowire sensing region respectively between every two sensing electrodes of the sensing electrodes. A dielectric layer is formed to cover the first nanowire sensing region, the second nanowire sensing region and the third nanowire sensing region, and the first nanowire sensing region and the third nanowire sensing region are exposed.
Abstract:
A sensor device and a method of manufacturing the same are provided. The sensor device includes a substrate, a plurality of sensing electrodes, a humidity nanowire sensor, a temperature nanowire sensor, and a gas nanowire sensor. The sensing electrodes are formed on the substrate, and the humidity, the temperature and the gas nanowire sensors are also on the substrate. The humidity nanowire sensor includes an exposed first nanowire sensing region, the temperature nanowire sensor includes a second nanowire sensing region, and the gas nanowire sensor includes a third nanowire sensing region.
Abstract:
A sensor device and a method of manufacturing the same are provided. The sensor device includes a substrate, a plurality of sensing electrodes, a humidity nanowire sensor, a temperature nanowire sensor, and a gas nanowire sensor. The sensing electrodes are formed on the substrate, and the humidity, the temperature and the gas nanowire sensors are also on the substrate. The humidity nanowire sensor includes an exposed first nanowire sensing region, the temperature nanowire sensor includes a second nanowire sensing region, and the gas nanowire sensor includes a third nanowire sensing region.
Abstract:
A gas sensing apparatus including a gas sensor, a gas determining circuit and a gas database is provided. The gas sensor includes at least two nanowire sensors. The gas sensor is configured to sense multiple gases and output a plurality of sensing signals. The gas determining circuit is coupled to the gas sensor. The gas determining circuit is configured to receive the sensing signals and determine types of the gases according to reference data and the sensing signals. The gas database is coupled to the gas determining circuit. The gas database stores the reference data and outputs the reference data to the gas determining circuit. Each of the nanowire sensors includes at least one nanowire. Structural properties of the nanowires are different.
Abstract:
A method of flattening surface of conductive structure including a substrate, a dielectric layer on the substrate, and a conductive line formed in the dielectric layer is provided. A surface of the conductive line has a recess. A cover layer is formed on the substrate. A mechanical polishing process is performed to remove a portion of the cover layer. A remaining cover layer fills and levels the recess.