摘要:
A distribution unit for distributing a multi-phase fluid mixture is disclosed. The distribution unit includes a distribution body defining a first passage, and a first distal body portion having a plurality of first slots. The distribution body includes a second distal body portion having a plurality of second slots distributed on a side wall of the second distal body portion. Each of the plurality of second slots is adapted to accommodate a baffle plate. The second distal body portion includes at least one aperture formed on a bottom wall of the second distal body portion. The plurality of first slots, the plurality of second slots, and the at least one aperture are in fluid communication with the first passage to discharge the flow of the multi-phase fluid.
摘要:
This invention relates to a process for hydro cracking of heavy oils. More particularly, this invention relates to a catalytic process for converting heavy oils, such as vacuum gas oil (VGO) and VGO containing a high proportion of vacuum resid (VR) to middle distillate products.
摘要:
The present invention relates to a process and system for complete conversion of crude oils by integrating Desalter unit, Atmospheric and vacuum column, high severity FCC process, Naphtha cracking process, residue slurry hydrocracking process, Delayed coking process, Selective mild hydrocracking aromatic production unit, Dehydrogenation units, Aromatic/olefin recovery section, gasifier unit along with syngas to olefins conversion section.
摘要:
The present invention relates to an assorted co-staging and counter stage hydro-treating process configuration scheme is disclosed for deep desulfurization and deep hydro-treating of diesel range hydrocarbons for obtaining diesel product having product sulfur less than 10 ppm and cetane number more than 51.
摘要:
The present invention relates to a hydrocracking reactor system and a process utilizing the same for upgrading heavy hydrocarbonaceous material to value-added products. Accordingly, an aspect of the present invention includes dispersing a liquid feedstock pre-mixed with a catalyst from top of a reactor vessel to obtain dispersed droplets having a predetermined droplet size less than 500 μm, introducing a gaseous feed comprising primarily of hydrogen from bottom of the reactor vessel to form a continuous gaseous phase throughout a cross-section of the reactor vessel, and allowing the dispersed droplets to contact the continuous gaseous phase throughout the cross-section of the reactor vessel to form reaction effluent comprising one or more lighter product hydrocarbons. The method may further include removing at least a top portion and at least a bottom portion of the reaction effluent from the reactor vessel.