Abstract:
A complete on-chip memory system for cylindrical bubble domains and a magnetic chip decoder for the system. Write and read decoding, memory storage, and sensing are provided on a single magnetic chip with a minimum number of interconnections and ease of fabrication. Decoding is achieved using magnetic overlays for propagation and current loops to provide selective switching at various locations. N control lines enable selective connections between 2N domain generators and 2N shift registers. The decoders have 2N double propagation channels, each of which has two parallel paths. One path connects a generator to a shift register while the other path terminates in a bubble buster. Each shift register comprises a storage loop having bubble splitters, thus enabling NDRO. The storage loops are connected to a double propagation channel in a read decoder. Sensing means are connected to the output of the read decoder.
Abstract:
A magneto-optical memory element for use as a light beam addressable memory element is formed of permalloy and europium oxide films arranged in adjoining layers. Information is written into the permalloy layer while the device is at room temperature. The ambient temperature is then reduced below the Curie point of europium oxide causing the magnetization of the permalloy layer to be directly transferred by negative or anti-parallel exchange coupling to the europium oxide layer. The europium oxide then preserves the stored information in a form suitable for optical read-out which will take place at this low temperature. The device has the advantage that if the ambient temperature accidentally should rise above the Curie point of europium oxide going even as high as room temperature, the stored information will be preserved in the permalloy film until the temperature again is brought below the Curie point of europium oxide. Whereupon the europium oxide film is restored to its previous magnetic state by negative exchange coupling. Thus, the subject magneto-optical memory device is nonvolatile under fluctuating temperature conditions.
Abstract:
A method and apparatus for creation of cylindrical, single wall domains in selected locations in a magnetic sheet, such as orthoferrite or garnet films. A bias (stabilizing) magnetic field is applied normal to the magnetic sheet to saturate the sheet in one direction so that no reversely magnetized domains are present in the storage area. A localized magnetic field normal to the magnetic sheet but oppositely directed with respect to the bias field is then created. This localized field is produced by the action of an in-plane field and a bar of magnetic material on the sheet, or by a small current loop. The bias field is then reduced until a domain in nucleated at the site of the localized field. The domain will nucleate when the net reversely directed local field is greater than the nucleation field Hn at that location. The bias field is then increased to regulate the diameter of the domain produced. Means are provided to create a variable bias field normal to the sheet and to create an oppositely directed variable localized field at selected locations in the shett.