Abstract:
A method of controlling purging in a hydrogen storage system includes determining the internal hydrogen purity of a hydrogen tank and adjusting a hydrogen purging cycle of the hydrogen tank depending on the determined internal hydrogen purity. An apparatus for controlling purging in a hydrogen storage system is also provided.
Abstract:
A system control method is provided for measuring a distance between a smart key and a vehicle. When the distance between the smart key and the vehicle is changed based on a predetermined distance whether a hydrogen leak occurs is detected by a hydrogen sensor detection controller. A driver is then informed of a hydrogen leak via a display on a cluster, a turn-on of an emergency light, and a warning sound of the vehicle. Alternatively, a starting-impossible state of the vehicle or shutting-down starting of the vehicle is maintained to ensure safety measures based on the concentration of the leaking hydrogen.
Abstract:
A system and a method for sensing hydrogen charge state of a fuel cell electric vehicle are provided. The system includes an infrared transmission unit that transmits a fuel door sensing infrared signal for sensing a fuel door opened while charging hydrogen and a nozzle sensing infrared signal for sensing a charging station-side hydrogen charging nozzle connected to a hydrogen charging inlet of a vehicle. An infrared reception unit receives the fuel door sensing infrared signal and thereafter, reflected on a fuel door and the nozzle sensing infrared signal transmitted from the infrared transmission unit and thereafter, reflected on the hydrogen charging nozzle. A controller determines that the vehicle is being charged with hydrogen when sensing an open state of the fuel door and a hydrogen charging inlet connection state of the hydrogen charging nozzle.
Abstract:
Disclosed is a method and related system of regenerating a raw material for a hydrogen supply system of a fuel cell. The method includes reacting aluminum and a metal hydroxide to produce hydrogen in the hydrogen supply system of a fuel cell; and recovering an aluminum compound produced simultaneously with the hydrogen in the reaction. An aluminum hydroxide is obtained from the aluminum compound. The aluminum hydroxide is heat-treated to obtain an aluminum oxide. The aluminum oxide is reduced to obtain aluminum. The obtained aluminum is re-supplied as a raw material for producing the hydrogen.
Abstract:
A system and method for controlling hydrogen charging for vehicles are provided. The system includes a hydrogen sensor configured to detect a leak in a hydrogen tank and a controller configured to stop an inflow of hydrogen into the hydrogen tank when a hydrogen concentration value detected by the hydrogen sensor is a reference value or greater.
Abstract:
A system and a method for sensing hydrogen charge state of a fuel cell electric vehicle are provided. The system includes an infrared transmission unit that transmits a fuel door sensing infrared signal for sensing a fuel door opened while charging hydrogen and a nozzle sensing infrared signal for sensing a charging station-side hydrogen charging nozzle connected to a hydrogen charging inlet of a vehicle. An infrared reception unit receives the fuel door sensing infrared signal and thereafter, reflected on a fuel door and the nozzle sensing infrared signal transmitted from the infrared transmission unit and thereafter, reflected on the hydrogen charging nozzle. A controller determines that the vehicle is being charged with hydrogen when sensing an open state of the fuel door and a hydrogen charging inlet connection state of the hydrogen charging nozzle.
Abstract:
A solenoid valve includes: an independently movable pilot plunger head; a main seat including a hole, so that gas flows into the solenoid valve through the hole of the main seat; a main plunger being in contact with the main seat; a pilot plunger disposed at top surface of the main plunger inside the solenoid valve, and including a hollow portion inside the pilot plunger; and a pilot plunger head disposed at one side inside the pilot plunger, and having an apex being in contact with the main plunger. The pilot plunger is movable inside the valve, the pilot plunger head is movable inside the hollow portion of the pilot plunger, and the pilot plunger head and the pilot plunger separately move from each other.
Abstract:
A system control method is provided for measuring a distance between a smart key and a vehicle. When the distance between the smart key and the vehicle is changed based on a predetermined distance whether a hydrogen leak occurs is detected by a hydrogen sensor detection controller. A driver is then informed of a hydrogen leak via a display on a cluster, a turn-on of an emergency light, and a warning sound of the vehicle. Alternatively, a starting-impossible state of the vehicle or shutting-down starting of the vehicle is maintained to ensure safety measures based on the concentration of the leaking hydrogen.
Abstract:
An apparatus is provided for safely discharging hydrogen permeated and leaking from a fuel tank of a fuel cell vehicle. The hydrogen exhaust apparatus for a fuel cell vehicle collects and safely processes hydrogen permeating a tank, and quantitatively detects the hydrogen transmissive amount. Thus the apparatus has improved a shape and attachment manner of a dome protector mounted in a hydrogen fuel tank. The safety aspect of hydrogen discharged to the air is improved, and an active response to various controls by quantitatively detecting the hydrogen transmissive amount is implemented.
Abstract:
A system and a method for sensing hydrogen charge state of a fuel cell electric vehicle are provided. The system includes an infrared transmission unit that transmits a fuel door sensing infrared signal for sensing a fuel door opened while charging hydrogen and a nozzle sensing infrared signal for sensing a charging station-side hydrogen charging nozzle connected to a hydrogen charging inlet of a vehicle. An infrared reception unit receives the fuel door sensing infrared signal and thereafter, reflected on a fuel door and the nozzle sensing infrared signal transmitted from the infrared transmission unit and thereafter, reflected on the hydrogen charging nozzle. A controller determines that the vehicle is being charged with hydrogen when sensing an open state of the fuel door and a hydrogen charging inlet connection state of the hydrogen charging nozzle.