Abstract:
A flash device structure comprises a front window mechanism and a fixing seat. The front window mechanism has a base, a luminous module and a placement element, wherein the luminous module is set up on the placement element to be located inside the base and maintain the luminous module electrically connected. The fixing seat includes a trigger, wherein the trigger electrically connects with the luminous module when the fixing seat is connected into the front window mechanism.
Abstract:
A liquid crystal display includes an insulating substrate, a plurality of parallel gate lines disposed on the insulating substrate, and a plurality of data lines disposed on the insulating substrate. The data lines insulatingly intercross the gate lines. An intersection between two of the plurality of gate lines and a corresponding two of the plurality of data lines defines a pixel region. Each pixel region includes a first thin film transistor (TFT), a first pixel electrode, and a second pixel electrode. The first TFT includes a first gate electrode connected with the gate line, a first source electrode connected with the first pixel electrode, and a first drain electrode connected with the first pixel electrode. A voltage of the first pixel electrode is different from a voltage of the second pixel electrode.
Abstract:
An exemplary liquid crystal panel (400) includes a first substrate (401) having a common electrode layer (429), a second substrate (402) parallel to the first substrate, and a liquid crystal layer (403) between the first and second substrates. The liquid crystal layer defines an active area (406) thereat. The second substrate includes common lines (440). Electrical coupling elements are disposed at the active area, so as to electrically couple the common electrode layer to the common lines.
Abstract:
An exemplary TFT array substrate includes: an insulating substrate (201), a gate line (23) and a repair structure (272) arranged on the insulating substrate, a gate insulating layer (204) covering the gate line and the repair structure; a data line (27) arranged on the gate insulating layer corresponding to the repair structure, which is insulated from the gate line and intersects with the gate line. The repair structure has a gap (274). The gap of the repair structure is located at where the repair structure overlapping to the gate line.
Abstract:
A metal catalyst for hydrogenating unsaturated carbon-carbon bonds of copolymer is provided. The metal catalyst is a bimetallic complex comprising iridium and ruthenium. The metal catalyst has a formula comprising M1aM2bXm(L1)n, wherein the M1 is iridium, M2 is ruthenium; X is hydrogen, chlorine, bromine, iodine or pseudo halide; L1 is phosphine, bisphosphine, arsane or organic with nitrogen, sulfur and oxygen.
Abstract:
A vertical alignment liquid crystal display device includes a number of pixel regions. Each pixel region includes a lower substrate unit and an upper substrate unit having an upper glass layer, a first protrusion and a second protrusion formed on the upper glass layer, and a conductive layer formed on the second protrusion. Each of the first and second protrusions includes two uneven sections. A first potential difference is applied between the upper glass layer and the lower substrate unit, and a second potential difference, being independent from the first potential difference, is applied between the conductive layer formed on the second protrusion and the lower substrate unit.
Abstract:
A hydrogenation catalyst system is provided. The catalyst system includes a metal complex of Formula (I), an organic lithium compound and an organic compound having a cyclic structure including at least one double bond. In Formula (I), M is transition metals. R1, R2, R3, R4 and R5 are the same or different, including hydrogen, C1-8 alkyl, and C1-8 alkoxy, or two of R1, R2, R3, R4 and R5 are linked together to form a ring. X1, X2 and X3 are a cyclic group, hydrogen, chlorine, bromine, alkyl or alkoxy, wherein when one of X1, X2 and X3 is a cyclic group, and the others are the same or different, including hydrogen, chlorine, bromine, alkyl or alkoxy. The invention also provides a selective hydrogenation process utilizing the catalyst system.
Abstract:
A liquid crystal panel (200) includes parallel gate lines (212), and parallel data lines (213) insulatingly intercrossing the gate lines. The gate lines and the data lines define a plurality of pixel regions (211). Each pixel region includes a first thin film transistor (TFT) (215), a second TFT (216), a first pixel electrode (217), and a second pixel electrode (218). The first TFT includes a first gate electrode connected with the gate line, a first source electrode connected with the data line, and a first drain electrode connected with the first pixel electrode. The second TFT includes a second gate electrode (2162), a second source electrode (2161), and a second drain electrode (2163). The second gate electrode is connected with a gate line via a voltage dividing element. The second drain electrode is connected with the second pixel electrode.