摘要:
A gamma voltage generator can control brightness of a first color pixel unit and a second color pixel unit. A first potential divider is coupled between a first node and a second node for generating a first main gamma voltage. At least one second potential divider is coupled between the second node and a third node for generating a first sub-gamma voltage and a second sub-gamma voltage. The brightness of the first color pixel unit is controlled by the first main gamma voltage and the first sub-gamma voltage. The brightness of the second color pixel unit is controlled by the first main gamma voltage and the second sub-gamma voltage.
摘要:
A color compensation method for a display is disclosed. The display includes a display module for receiving a plurality of original pixel data. The method includes calculating power-on time duration of the display module; and adjusting gray levels of the original pixel data according to the power-on time duration.
摘要:
A gamma voltage generator can control brightness of a first color pixel unit and a second color pixel unit. A first potential divider is coupled between a first node and a second node for generating a first main gamma voltage. At least one second potential divider is coupled between the second node and a third node for generating a first sub-gamma voltage and a second sub-gamma voltage. The brightness of the first color pixel unit is controlled by the first main gamma voltage and the first sub-gamma voltage. The brightness of the second color pixel unit is controlled by the first main gamma voltage and the second sub-gamma voltage.
摘要:
A spontaneously color compensating control apparatus is provided for performing spontaneous color compensation on the original pixel data and outputting compensated pixel data to a display module accordingly. The control apparatus includes a timer and a timing controller. The timer is used for providing the using time of the display module and the timing controller is used to receive the original pixel data and output the compensated pixel data. The timing controller adjusts the gray levels of the original pixel data to output the compensated pixel data according to the using time of the display module.
摘要:
A gamma voltage generator can control brightness of a first color pixel unit and a second color pixel unit. A first potential divider is coupled between a first node and a second node for generating a first main gamma voltage. At least one second potential divider is coupled between the second node and a third node for generating a first sub-gamma voltage and a second sub-gamma voltage. The brightness of the first color pixel unit is controlled by the first main gamma voltage and the first sub-gamma voltage. The brightness of the second color pixel unit is controlled by the first main gamma voltage and the second sub-gamma voltage.
摘要:
A gamma voltage generator can control brightness of a first color pixel unit and a second color pixel unit. A first potential divider is coupled between a first node and a second node for generating a first main gamma voltage. At least one second potential divider is coupled between the second node and a third node for generating a first sub-gamma voltage and a second sub-gamma voltage. The brightness of the first color pixel unit is controlled by the first main gamma voltage and the first sub-gamma voltage. The brightness of the second color pixel unit is controlled by the first main gamma voltage and the second sub-gamma voltage.
摘要:
A method of dynamic frame presentation improvement for liquid crystal display is disclosed. The method comprises the step of providing a gray level mapping table, which maps the signal gray levels from 0 to N into mapped gray levels from 1 to N−1 level. Thereafter, the mapped data is fed into over-voltage compensation circuit. The over-voltage compensation circuit then implements process of the gray level ascending or gray level descending while the previous frame turns into current frame with a varied gray level.
摘要:
A method of dynamic frame presentation improvement for liquid crystal display is disclosed. The method comprises the step of providing a gray level mapping table, which maps the signal gray levels from 0 to N into mapped gray levels from 1 to N−1 level. Thereafter, the mapped data is fed into over-voltage compensation circuit. The over-voltage compensation circuit then implements process of the gray level ascending or gray level descending while the previous frame turns into current frame with a varied gray level.
摘要:
A matrix sensing apparatus with architecture having reduced quantity of required sensing lines is disclosed. The matrix sensing apparatus includes a plurality of driving lines, a plurality of sensing lines and a matrix sensing region. The matrix sensing region includes a plurality of sensing areas. Each sensing area includes a first transistor, a second transistor, and a sensing unit for generating a sensing signal. The first transistor is coupled to the sensing unit and a corresponding sensing line. The second transistor is coupled to the first transistor, a first corresponding driving line and a second corresponding driving line. The first transistor together with the second transistor functions to control the signal connection between the sensing unit and the corresponding sensing line based on the driving signals of the first and second corresponding driving lines.
摘要:
A multi-frame overdriving circuit for use in a liquid crystal display including a counting unit and a multi-frame overdriving unit is provided. The counting unit counts a number m of frame periods for which a pixel data corresponding to a pixel keeps a first gray value, wherein m is a positive integer. When the pixel data changes to a second gray value from the first gray value in a first frame period, the multi-frame overdriving unit respectively outputs y multi-frame overdriving pixel data corresponding to the pixel within successive y frame periods starting from the first frame period. The y multi-frame overdriving pixel data are related to the first gray value, the second gray value and the number m of frame periods, wherein y is a positive integer.