Abstract:
A pixel of the LCD is driven according to a precharge pixel value and a compensation pixel value both being generated from a pixel value during a precharge field and a compensation field respectively. A precharge driving voltage corresponding to the precharge pixel value, and a compensation driving voltage corresponding to the compensation pixel value is then determined and used to drive the pixel. The lightness of the pixel driven according to the precharge pixel value and the compensation pixel value is substantially the same as the lightness of the pixel if driven according to the pixel value. The precharge field comes before the compensation field when the precharge pixel value is larger than the compensation pixel value, and the compensation field comes before the precharge field when the compensation pixel value is larger than the precharge pixel value.
Abstract:
A backlight module of a flat panel display for lighting the flat panel display is described. The backlight module includes a rear bezel, a plurality of lamps, an optical film and a middle bezel. The rear bezel is composed of a bezel main body and sidewalls. The bezel main body includes a plurality of ribs to enhance the strength thereof and a plurality of studs to fix with a wall mounting bracket or a foot stand. The middle bezel fixes the optical film on the rear bezel. The backlight module may further include a plurality of supports integrated the rear bezel. A reflective film may also be integrated on the rear bezel to further reduce the quantity of separable components of the flat panel display.
Abstract:
A display device comprising a glass substrate, a display array, a backlight unit, at least one first driver, a second driver, a scalar, and a timing controller. The display array is disposed on the glass substrate and comprises a plurality of pixel units. The backlight unit provides light to the display array. The at least one first driver controls the pixel units. The second driver drives the backlight unit. The scalar processes an image input signal and outputs a digital image signal. The timing controller receives the digital image signal and provides at least one control signal to the at least one first driver. The memory device stores optics and image references of the display array. The memory device is coupled to the circuit board of the at least one first driver, the circuit board of the second driver, or the glass substrate.
Abstract:
A liquid crystal display (LCD) driving method is provided. A pixel of the LCD is driven according to a precharge pixel value and a compensation pixel value both being generated from a pixel value during a precharge field and a compensation field respectively. A precharge driving voltage corresponding to the precharge pixel value, and a compensation driving voltage corresponding to the compensation pixel value is then determined and used to drive the pixel. The lightness of the pixel driven according to the precharge pixel value and the compensation pixel value is substantially the same as the lightness of the pixel if driven according to the pixel value. The precharge field comes before the compensation field when the precharge pixel value is larger than the compensation pixel value, and the compensation field comes before the precharge field when the compensation pixel value is larger than the precharge pixel value.
Abstract:
A gamma voltage generator can control brightness of a first color pixel unit and a second color pixel unit. A first potential divider is coupled between a first node and a second node for generating a first main gamma voltage. At least one second potential divider is coupled between the second node and a third node for generating a first sub-gamma voltage and a second sub-gamma voltage. The brightness of the first color pixel unit is controlled by the first main gamma voltage and the first sub-gamma voltage. The brightness of the second color pixel unit is controlled by the first main gamma voltage and the second sub-gamma voltage.
Abstract:
A spontaneously color compensating control apparatus is provided for performing spontaneous color compensation on the original pixel data and outputting compensated pixel data to a display module accordingly. The control apparatus includes a timer and a timing controller. The timer is used for providing the using time of the display module and the timing controller is used to receive the original pixel data and output the compensated pixel data. The timing controller adjusts the gray levels of the original pixel data to output the compensated pixel data according to the using time of the display module.
Abstract:
A system and a method for flat panel display brightness correction, removing brightness difference between flat panel displays in one product line. The brightness correction system comprises a converter for control of color temperature and brightness of an image frame, and a backlight controller for generating corrected light for display in the image frame.
Abstract:
The invention provides a plasma display panel including a number of first display units and a number of second display units, wherein the first and second display units are composed of plural sustaining electrodes, scanning electrodes, data electrodes. The sustaining electrodes and scanning electrodes form at least two adjacent electrode combinations, namely the first electrode combination and the second electrode combination, wherein each electrode combination includes one sustaining electrode and one scanning electrode. Data electrodes are disposed along a direction approximately orthogonal to these sustaining electrodes and scanning electrodes. The first display unit corresponds to the first primary color and is controlled by the first data electrode and the first electrode combination while the second display unit corresponds to the second primary color and is controlled by the first data electrode and the second electrode combination. The first display unit and the second display unit are adjacent and alternately arranged.
Abstract:
A gamma voltage generator can control brightness of a first color pixel unit and a second color pixel unit. A first potential divider is coupled between a first node and a second node for generating a first main gamma voltage. At least one second potential divider is coupled between the second node and a third node for generating a first sub-gamma voltage and a second sub-gamma voltage. The brightness of the first color pixel unit is controlled by the first main gamma voltage and the first sub-gamma voltage. The brightness of the second color pixel unit is controlled by the first main gamma voltage and the second sub-gamma voltage.
Abstract:
A gamma voltage generator can control brightness of a first color pixel unit and a second color pixel unit. A first potential divider is coupled between a first node and a second node for generating a first main gamma voltage. At least one second potential divider is coupled between the second node and a third node for generating a first sub-gamma voltage and a second sub-gamma voltage. The brightness of the first color pixel unit is controlled by the first main gamma voltage and the first sub-gamma voltage. The brightness of the second color pixel unit is controlled by the first main gamma voltage and the second sub-gamma voltage.