Abstract:
A crack detection system and an apparatus equipped with a crack detection circuit, including a main body, and a detection control circuit and a detection coil disposed on the main body. The main body includes a top surface, a bottom surface, and a side surface coupled between the top surface and the bottom surface. The detection coil is distributed on an edge of the main body and disposed surrounding the side surface. Two ends of the detection coil are electrically coupled to the detection control circuit to form a closed-loop detection circuit. The detection circuit is configured to detect a crack in an edge region of the main body. The detection coil includes a plurality of detection sections sequentially coupled from head-to-tail, and adjacent detection sections are not collinear.
Abstract:
A crack detection system and an apparatus equipped with a crack detection circuit, including a main body, and a detection control circuit and a detection coil disposed on the main body. The main body includes a top surface, a bottom surface, and a side surface coupled between the top surface and the bottom surface. The detection coil is distributed on an edge of the main body and disposed surrounding the side surface. Two ends of the detection coil are electrically coupled to the detection control circuit to form a closed-loop detection circuit. The detection circuit is configured to detect a crack in an edge region of the main body. The detection coil includes a plurality of detection sections sequentially coupled from head-to-tail, and adjacent detection sections are not collinear.
Abstract:
The present disclosure provides a method and an apparatus for coding or decoding a matrix, includes: dividing a matrix into layers according to a preset quantity of divided layers, and grouping matrix elements into different layers; performing, according to a determined layer number of a highest layer to be coded and in an order of layers one by one, coding processing on matrix elements at each layer to be coded; for a layer having a layer number less than or equal to the layer number of the highest layer to be coded, writing residual data between an original matrix element value corresponding to the layer and a corresponding matrix element predicted value into a bit stream; for a layer having a layer number greater than the layer number of the highest layer to be coded, writing no coded data of the layer into the bit stream.
Abstract:
Methods and apparatus for coding and decoding a MATRIX. A coding method includes: dividing a MATRIX into layers according to a preset quantity of layers, and grouping MATRIX elements into different layers; performing, according to a determined to-be-coded layer number and in an order of layers one by one, coding processing on MATRIX elements at each layer to be coded; for a layer having a layer number less than or equal to the to-be-coded layer number, writing residual data between an original MATRIX element value corresponding to the layer and a corresponding MATRIX element predicted value into a bit stream; for a layer having a layer number greater than the to-be-coded layer number, writing no coded data of the layer into the bit stream; and coding the to-be-coded layer number and writing the coded layer number of the coded layer into the bit stream.
Abstract:
A methods and apparatus for coding and decoding a MATRIX. The coding method includes: dividing a MATRIX into layers according to a preset quantity of layers, and grouping MATRIX elements into different layers; performing, according to a determined to-be-coded layer number and in an order of layers one by one, coding processing on MATRIX elements at each layer to be coded; for a layer having a layer number less than or equal to the to-be-coded layer number, writing residual data between an original MATRIX element value corresponding to the layer and a corresponding MATRIX element predicted value into a bit stream; for a layer having a layer number greater than the to-be-coded layer number, writing no coded data of the layer into the bit stream; and coding the to-be-coded layer number and writing the coded layer number of the coded layer into the bit stream.
Abstract:
A crack detection system and an apparatus equipped with a crack detection circuit, including a main body, and a detection control circuit and a detection coil disposed on the main body. The main body includes a top surface, a bottom surface, and a side surface coupled between the top surface and the bottom surface. The detection coil is distributed on an edge of the main body and disposed surrounding the side surface. Two ends of the detection coil are electrically coupled to the detection control circuit to form a closed-loop detection circuit. The detection circuit is configured to detect a crack in an edge region of the main body. The detection coil includes a plurality of detection sections sequentially coupled from head-to-tail, and adjacent detection sections are not collinear.
Abstract:
The present disclosure provides a method and an apparatus for coding or decoding a matrix, includes: dividing a matrix into layers according to a preset quantity of divided layers, and grouping matrix elements into different layers; performing, according to a determined layer number of a highest layer to be coded and in an order of layers one by one, coding processing on matrix elements at each layer to be coded; for a layer having a layer number less than or equal to the layer number of the highest layer to be coded, writing residual data between an original matrix element value corresponding to the layer and a corresponding matrix element predicted value into a bit stream; for a layer having a layer number greater than the layer number of the highest layer to be coded, writing no coded data of the layer into the bit stream.
Abstract:
A picture encoding and decoding method, a picture encoding and decoding device and a network system are provided, in which, the picture encoding method includes: determining a prediction block used by a picture block according to a division manner of the picture block; determining a corresponding division level in the picture block or the prediction block of transform blocks corresponding to the picture block or the prediction block, in which, the transform blocks corresponding to the picture block or the prediction block include one or more transform blocks; determining a size of the transform blocks corresponding to the picture block or the prediction block according to the division manner of the picture block and the division level; determining identification information for identifying the division level corresponding to the transform blocks corresponding to the picture block or the prediction block; and writing the identification information into a code stream.